NEXTIRS

DAILY EDITORIAL ANALYSIS

TOPIC

DEBATE OVER RIVER INTERLINKING IN INDIA

www.nextias.com

DEBATE OVER RIVER INTERLINKING IN INDIA

Context

- The ambitious project of river interlinking in India, aimed at connecting surplus rivers with those facing water deficits, has been touted as a solution to the country's water woes.
 - However, this grandiose idea, which has been in the making for decades, is fundamentally flawed and poses significant environmental risks.

Historical Context

- The concept of interlinking rivers dates back to the 19th century, with Sir Arthur Cotton's designs for irrigation dams in the Godavari and Krishna river valleys.
- Over the years, this idea evolved, with notable contributions from engineers like M. Visvesvaraya, K.L. Rao, and Captain Dinshaw J. Dastur.
- The modern iteration of this concept, known as the **National Water Grid, re-emerged as the River-Interlinking Project (ILR)** under the Ministry of Water Resources.

Current Initiatives

- In 2002, the **Supreme Court of India** ordered the Union Government to complete the river interlinking project within the next 12–15 years.
 - In response to this order, the Government of India appointed a Task Force and scientists, engineers, ecologists and others for the project related works.
- Currently, River Interlinking in India is managed by the National Water Development Agency (NWDA), established in 1982, and is part of the National Perspective Plan (NPP) formulated in 1980.

Do You Know?

- Hashim Commission Report (2004-05): It highlighted which rivers and at which locations water surpluses could be transferred and to which rivers, and at what factors in these rivers the transfer water could be taken.
- National Water Policy (NWP) 2012 considered water as economic goods for promoting its conservation and efficient use.
 - It was formulated to govern the planning and development of water resources and their optimum utilization.

Components of the NPP

- **Himalayan Rivers Development Component:** It involves **14 link projects** aimed at transferring water from the Himalayan rivers to the northern and eastern parts of India.
- **Peninsular Rivers Development Component:** It includes 16 link projects designed to connect rivers in the southern part of India, transferring surplus water from the Mahanadi and Godavari rivers to the Krishna, Pennar, and Cauvery rivers.


Key Projects and Their Status

- Out of the 30 identified link projects under the NPP, significant progress has been made:
 - Pre-Feasibility Reports (PFRs): Completed for all 30 links.
 - Feasibility Reports (FRs): Completed for 24 links.
 - Detailed Project Reports (DPRs): Completed for 8 links.

Key Projects

- The **Ken-Betwa Link Project (KBLP)** is the first project under the NPP to be implemented. It aims to benefit the drought-prone Bundelkhand region of Madhya Pradesh and Uttar Pradesh.
 - It also aims to provide annual irrigation to 10.62 lakh hectares, drinking water to 62 lakh people, and generate 130 MW of power.

 Priority Projects: Besides the Ken-Betwa Link Project (KBLP), other priority projects include the Modified Parbati-Kalisindh-Chambal (PKC) Link and the Godavari-Cauvery Link.

Need for Inter Basin Water Transfers (IBWT)

- It is necessarily required to overcome the water scarcity situations in the regions/basins and to enhance water utility and reduce water wastage of water surplus areas in the following manner:
 - Large variation in rainfall and available water resources in space and time;
 - Diversion of water from water surplus basins to water deficit basins/regions;
 - Use of the surplus water which is otherwise flowing into the sea unutilized;
 - To mitigate likely adverse impact of climate change, short term and long term;

Benefits of River Interlinking

- Water Availability: Ensures equitable distribution of water across regions, addressing both drought and flood issues.
- Agricultural Productivity: Enhances irrigation facilities, leading to increased agricultural output.

- Drinking Water Supply: Provides reliable drinking water to millions of people.
- Hydropower Generation: Contributes to renewable energy production through hydropower projects.

Challenges and Concerns

- **Ecological Imbalance:** Interlinking rivers can disrupt the natural flow of rivers, affecting aquatic ecosystems and biodiversity. The alteration of river courses can lead to the loss of habitats for various species.
 - The **Ken-Betwa River Link Project**, for instance, involves constructing a dam within the **Panna Tiger Reserve**, raising concerns about submergence and loss of biodiversity.
- Financial Viability: High costs associated with the implementation and maintenance of the projects.
 - The **Ken-Betwa River Link Project**, estimated to cost around 45,000 crore, has faced objections from experts and circumvented strict legal terms for hydroelectric power projects.
- Inter-State Disputes: States have the power to use water in *supplies*, *irrigation*, *canals*, *drainage*, *embankments*, *water storage*, *and water power* within their respective territories.
 - Water is listed in List II of the Seventh Schedule of the Indian Constitution, which is the State List.
 - However, the Central Government has the power to regulate and develop inter-state rivers and river valleys List I of the Seventh Schedule.
- **Socio-Economic Impacts:** The estimated cost of 5.5 lakh crore does not account for the social, environmental, and operational expenses, which will ultimately burden taxpayers.
 - The displacement of communities, loss of livelihoods, and destruction of cultural heritage sites are significant issues that need to be addressed.
- **Displacement of Communities:** Large-scale projects often require the displacement of local communities, leading to social and economic challenges.
 - The resettlement process can be complex and may not always be fair or adequate.
- **Climate Change Impact:** The alteration of river systems can exacerbate the impacts of climate change, such as increased frequency and intensity of floods and droughts.
 - It can further strain the already vulnerable regions.
- Deforestation and Habitat Loss: The construction of canals and reservoirs requires large-scale deforestation, leading to habitat loss for wildlife.
 - It can also contribute to soil erosion and degradation.
- Water Quality Issues: The mixing of waters from different rivers can lead to changes in water quality, affecting both human and animal populations.
 - Pollutants from one river can contaminate another, leading to health hazards.

Climate Blindspot

- A study in **Nature Communications** reveals that river interlinking projects may inadvertently exacerbate water stress rather than alleviate it.
- By altering natural water flows and disrupting hydro-meteorological systems, river interlinking can lead to unintended consequences such as changes in monsoon patterns.
- These changes can, in turn, worsen the very water scarcity issues the projects aim to solve.

Conclusion and Way Forward

- While the idea of interlinking rivers to solve water scarcity is appealing, it overlooks the profound environmental and socio-economic costs.
- A more holistic approach to watershed management, focusing on sustainable and localized solutions, is
 essential to address India's water challenges without causing irreversible damage to its natural and human
 landscapes.
- Instead of relying solely on large-scale infrastructural projects, there is a need to consider sustainable alternatives that take into account the complex interplay between climate, water resources, and ecosystems.

Source: TH

Mains Practice Question

Critically examine the potential environmental consequences of river interlinking projects in India, considering the ecological, social, and economic implications.