NEXT IRS

DAILY EDITORIAL ANALYSIS

TOPIC

SEMICONDUCTOR SECTOR NEEDS SOPS

www.nextias.com

SEMICONDUCTOR SECTOR NEEDS SOPS

Context

• The **semiconductor industry** is a critical pillar of modern technology, driving advancements in **smartphones**, **computing**, and **Al-driven systems**. As **demand surges**, the **implementation of Standardized Operating Procedures (SOPs)** becomes essential to ensure **quality**, **efficiency**, and **global competitiveness**.

Understanding Semiconductors

- **Definition:** Semiconductors have electrical properties **between conductors and insulators**, enabling them to regulate electrical flow.
- Composition: Made from elements like silicon and germanium and commonly referred to as integrated circuits (ICs) or microchips.
- Global Semiconductor Market Share:
 - Taiwan (44%) => Largest chip producer
 - China (28%)
 - South Korea (12%)
 - United States (6%)
 - Japan (2%)

India's Semiconductor Sector

- Growth and Market Potential:
 - Projected market size:
 - \$63 billion by 2026
 - \$103 billion by 2030
 - Milestone: India's first indigenous semiconductor chip is expected to debut in 2025, marking progress toward self-reliance in chip manufacturing.
- India's Competitive Advantages:
 - Cost-Competitiveness: Lower labor costs and a large domestic market.
 - Skilled Workforce: India leads in STEM graduates, crucial for R&D and manufacturing.
 - Rising Domestic Demand: Increasing use of smartphones, IoT devices, and Al-driven systems.
 - Strategic Global Partnerships:
 - Collaborations with the U.S., Japan, Singapore, and Taiwan to secure investments and technology transfer.

Key Challenges in India's Semiconductor Sector

- Supply Chain Vulnerabilities: Semiconductor production involves multiple stages, requiring seamless coordination of raw materials, components, and logistics.
 - Any disruption (e.g., geopolitical tensions, natural disasters) can cause delays and shortages.
- Technological Upgradation: Advanced semiconductor manufacturing demands state-of-the-art research facilities and a highly skilled workforce.
 - Continuous innovation is necessary to compete with global leaders.
- Geopolitical Risks: Trade restrictions and sanctions can disrupt access to critical semiconductor components.
 - **Ongoing U.S.-China tech rivalry** influences supply chain strategies.
- Intellectual Property (IP) Protection:
 - Risks of **IP theft and chip cloning** lead to revenue losses and security concerns.
- High Capital Investment: Establishing semiconductor fabrication plants (fabs) requires billions in investment, making funding a challenge.
- Environmental Concerns: Semiconductor manufacturing involves hazardous materials and generates significant waste.
 - Strict environmental regulations and sustainability measures are necessary.

NEXT IRS

Need for Standardized Operating Procedures (SOPs) in Semiconductor Manufacturing

SOPs ensure consistency, efficiency, and compliance in chip production. Key areas where SOPs are crucial include:

- Manufacturing Process Control: Prevents contamination and ensures precise storage and movement.
- Equipment Calibration & Maintenance: Regular checks on lithography, etching, and deposition tools.
- Process Monitoring: Standardized defect detection ensures high-quality semiconductor production.
- Quality Assurance & Testing: Uses automated optical inspection (AOI) and manual verification to detect defects.
- Data Documentation: Tracks process deviations, lot traceability, and corrective actions.
- Supply Chain & Logistics Management: Criteria for selecting **raw material and component suppliers**.
 - Inventory Management: Real-time tracking of raw materials, work-in-progress, and finished products.
- Environmental Compliance: Waste disposal, water usage, and emission control standards.
- Intellectual Property Protection: Security protocols for trade secrets and patent protection.
- Industry Certifications: Compliance with ISO 9001 (Quality Management) and ISO 14001 (Environmental Management).

Why Are SOPs Essential?

- Enhances production reliability and quality control.
- Minimizes operational risks and inefficiencies.
- Ensures global competitiveness and regulatory compliance.

As **technology advances**, companies must **continuously refine SOPs** to meet evolving industry demands. By **standardizing processes**, businesses can achieve **cost efficiency**, **innovation**, **and long-term success** in the rapidly evolving semiconductor landscape.

Government Initiatives to Strengthen India's Semiconductor Industry

- India Semiconductor Mission (ISM): Aims to boost semiconductor design, manufacturing, and innovation.
 - \$10 billion incentive program to attract investments.
 - Targets 25% local value addition by 2025-26 and 40% by 2030.
 - Financial Incentives for Manufacturing: Semiconductor Fab Scheme: 50% fiscal support for all technology nodes.
- Display Fab Scheme: 50% fiscal support for display panel manufacturing.
 - Compound Semiconductor Scheme: 50% support for fabs producing discrete semiconductors.
 - Design Linked Incentive (DLI) Scheme: Financial support for semiconductor design, chipsets, and IP development over five years.
- Semicon India Programme (2024): Four semiconductor manufacturing units approved to boost domestic production.
 - Scheme for Promotion of Manufacturing of Electronic Components & Semiconductors (SPECS): 25% financial incentive for capital expenditure on electronic components, micro/nano-electronics, and solar PV wafers.

Conclusion

• The competitiveness of India's semiconductor sector depends on its ability to maintain efficiency, quality, and compliance with global standards.

Mains Practice Question

[Q] How can standardized operating procedures (SOPs) transform the semiconductor sector in terms of quality control, safety, and operational efficiency?