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CHAPTER

Basics of Signal and System

Introduction

Just as a carpenter requires proper set of tools before he can sit down to make a piece of furniture, in a
similar manner a communication engineer needs to know about signals before he can start the process of
learning communication.

2.1 Signal and System

The communication technology can be conveniently broken down into three interacting parts.

e  Signal processing operations performed.

e The device that performs these operations.

e Theunderlining physics.

Thus to study the basic form of modulation and signal processing used in the communication it will be
fruitful to have a quick review of the concepts of signal and system.

2.1.1 Some Basic Signals
It will be very helpful to study some signals before hand, so that the analysis of the communication system
becomes easier. Some important and frequently used signals and their properties are mentioned in this section.

The Impulse Signal

Impulse function is not a function in its strict sense. Itis a distributed or generalized function. A generalized
function is defined in terms of its effect on other function. The unitimpulse function is generalised as any function
that follow the following condition:

1. Impulse signal (Dirac delta function):
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Properties of Impulse Function

signal.

1. Product property
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2. Shifting property

]fx(t) d(H)adt = x(0)
Similarly, -
]fx(t) 3(t—o)dt = x(o)
]:S(t)dt =1

1)

3. Scaling property

Sah = —8(t)

Ja]

m Find the impulse function form if x(f) = 412 §(2t - 4), where x(1) is an arbitrary

Solution:
x(f) = 412 §(2t-4)
= 412 3{2(t-2)}

42 .%5@ -2 ... from scaling property
212 §(t-2)

Now, from product property we have,
x(1) 8(t— o) = x(ar) O(t—ox)

So, x(t) = 2P|, - 8(t-2) =8 5(t-2)

Do you know? Impulse signals do not occur naturally but they are important functions providing a mathematical
frame work for the representation of various processes and signals. These come under a special class of
functions known as generalized functions.

Gate Function/Rectangular Pulse x(t)
Let us consider a rectangular pulse as shown in figure below: A
for il <t< 1
x()= Arect(t) = 2 2

0 otherwise -1/2 0 112
Figure-2.1

—T T
x(t)= Arect(i)z A for?<t<§
1

otherwise

—1/2 0 T/2
Figure-2.2
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Step Signal
u(t)

t
0

Figure-2.3: Continuous-time version of the unit-step function of unit amplitude

The continuous-time version of the unit-step function is defined by

) = 1. t>0
0; t<O

NOTE o Figure depicts the unit-step function u(?). It is said to exhibit discontinuity at ¢ = 0,
since the value of u(f) changes instantaneously from 0 to 1 when t = O. It is for this

reason that we have left out the equal sign in equation; that is u(0) is undefined.

° Unit step function denote sudden change in real time and a frequency or phase
selectivity in frequency domain.

There is one more definition of unit step function.

0 :t<0

1/2 ;t=0
ut) = ’

1 >0

Properties of Unit-Step Function

1 u(t=t) = [ult- to)]2 = u[u(t—to)]k, with k being any positive integer.
2. u(at—to)zu(z‘—%o];a>0
3. 8t =2ue)

t
4 u(t):IS(t)dT:{;’ ZCO)

Do you know? The unit-step function u(f) may also be used to construct other discontinuous waveforms. The
value at t= 0 gives rise to Gibb’s phenomenon when unit step function is constructed by sinusoidal signals.

Sampling/Interpolating/Sinc Function sinc(x) or Sa(mx)

'sinmx" ) . , 1
is the “sine over argument” function and it

The function

is denoted by “sinc (x)”. It is also known as “filtering function”.
Mathematically,
sinmtx
X
Sa(mx)

sinc (x)

Figure-2.4 : Sinc Function

Do you know? Just like impulse function sinc (x) is also a conceptual function since it can not be realized.
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The Unit-Ramp Function
The ramp function r(t) is a linearly growing function for positive values of independent variable . The

ramp function shown in figure is defined by
r(t)

t, t20
"M=10, t<o
, 1< \)(‘\\6
or r(t) = tu(t) &
The ramp function is obtained by integrating the unit step function 3°
t
fu(r)dt = r(f) 0 t
The relationship between the impulse, step and ramp signals are represented below:
Remember: Relationship between impulse, step and ramp signals
5([’) Integrate U(f) Integrate I’(l‘)
I’(l‘) Differentiate U(f) Differentiate 5([’)
Unit Signum Function
The unit signum function shown in figure is defined as follows x(t) = sgn(1)
1 t>0 !
sgn(t) =40 t=0
-1 t<0 0 t
This function can be expressed in terms of unit step function as e
sgn(t) = =1 + 2u(t)

Unit Signum Function

2.1.2 Signal-Classification

Continuous-Time and Discrete-Time signals

The signals that are defined at each instant of time are known as continuous time signals. However, if the
signals are defined only at certain time instants, it is called as discrete-time signals.

Based upon above discussion, four combinations are possible:

e  Continuous time continuous amplitude signal (Analog signal)

e  Continuous time discrete amplitude signal (Quantized signal)

e Discrete time continuous amplitude signal (Samplied signal)

e Discrete time discrete amplitude signal (Digital signal)

Analog and Digital Signal

If the amplitude of the signal can take all possible values in its dynamic range, it is called as analog
signal. On the other hand, a digital signal is one whose amplitude take some specific values in its dynamic
range.

Periodic and Aperiodic Signals
A signal is said to be periodic if it repeats itself after a certain time interval. For a signal to be periodic,
it must satisfy the following condition.

1. It should exist for all values of ‘t’.
2. x(t) =x(t+ T), where Tis the least value after which the signal repeats itself.
3. The value of T should be a fixed positive constant.
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‘T’ is referred as fundamental period.
Any signal which do not follow these conditions are termed as aperiodic signal.

NOTE Periodicity of Signal x(t) + x,(f):

A signal x(t) that is a linear combination of two periodic signals, x,(t) with fundamental
period T, and x,(t) with fundamental period T, as follows:

x(1) = x,(t) + x,(1)
is periodic if, U = ' _ 4 rational number
T5 n
Period of x(t), T=nT,=ml,
or, T=LCM(T,, T,)

Deterministic and Random Signal

A signal is said to be deterministic, if they can be completely represented by a mathematical expression

at any instance of time. Signals, which cannot be represented by any mathematical expression is called random
signal.

Note: For analysis purpose random signal can also be approximated by their statistical property.

Energy Signals and Power Signals
x(f) is an energy signal if
0< E<o and P=0
where ‘E’ is the energy and ‘P’ is the power of the signal x(1).
For a continuous-time signal (CTS),

E-= T|x(t)|2dt

—oco

For an energy signal, energy is finite while power is zero.

NOTE If x(t) ——— E, [where, Eisenergy of x(t)]

then X (L) — ofE
o

E
xot) —— —
o

ax(t) —— a°E

x(t) is a Power Signal if
if,0 < P< e and E=o
where E = Energy of signal x(t)
P = Power of signal x(f)
Almost all the practical periodic signals are “power signals”, since their average power is finite and non-zero.
For a CTS, the average power of a signal x(t) is,

T/2

.1 P . 1 A 2
P = e = R —
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NOTE e If x(t) = Acos wtor Asin ot, then P = A%/2

If x(t) = Ae*iot = P = A2

If x(ty=A = P = A2

It x(t) —> P, then x(i) — P
o

x(at) — Pand ax(at) — a2P

e Foran unit step signal, x(t) = u(t) and P =
2
Energy Signal Power Signal
1. The total energy is obtained using The average power is obtained
T
. 2 T
E=lim J|x® dt P=1lim [—=|xt)Pdt
Tem_"; THM_TZT x( )|
2. Forthe energy signal, 0 < E <o, For the power signal, 0 <P < oo,
and the average power P =0 and the energy E = co.
3. Non-periodic and finite duration Periodic signals are power signals. However,
signals are in general energy signals.| all power signals need not be periodic.
4. Energy signals are time limited. Power signals exist over infinite time.
Table-2.1

2.2 Time Domain and Frequency Domain Representation of a Signal

A signal x(t) can be represented in terms of relative amplitude of various frequency components present
in signal. This is possible by using exponential Fourier series. This is a frequency domain representation of the
signal. The time domain representation specifies a signal value at each instant of time. This means that a signal
x(t) can be specified in two equivalent ways:

(i) Time domain representation; where x(t) is represented as a function of time. Graphical time domain
representation is termed as waveform.

(i) The frequency domain representation; where the signal is represented graphically in terms of its

frequency graphical frequency domain representation is termed as spectrum.

Any of the above two representations uniquely specifies the function, i.e. if the signal is specified in time
domain, we can determine its spectrum. Conversely, if the spectrum is specified, we can determine the
corresponding time domain signal. In order to determine the function in frequency domain, it is necessary that
both amplitude spectrum and phase spectrum are specified.

Remember e Inmany cases, the spectrum is either real or imaginary, as such, only an amplitude plot
is enough as all frequency components have identical phase relation.
e We use both the conventions depending upon the problem we are studying.
e |f we want to analyze the signal at our perspective, it is convenient to see signal in its
time domain form, but if we want to process the signal through an LTI system, the
frequency domain approach becomes much fruitful.
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2.2.1 Decomposition of Signals
It will be fruitful for us if we can devise some technique that will allow us to break any unknown signal into
some standard and known signal set. There are two methods of doing this
(1) Any signal can be broken down into an infinite set of impulse signals. This process leads to the
time domain approach of signal and system.
(2) It can be broken down into an infinite set of orthogonal signals. This leads to frequency domain
description of signal and system.
Misconception: Not any representation of signal as set of impulse or exponential function is considered
as signal decomposition.

Consid iodic signal x(t) 1io=t=l ith ti iod T=2
x(t) = =

onsiaer a periodic signa 0 1<t<? with time perio .

__________ 1 e
1
-2 -1 2 t
-2
Figure-2.5

=)

The derivative of this signal is related to the impulse train g(t) = Y. [a,8(t — k) + b,8(t — 2k)] with period
Kk = —oo

T=2 [where, g, =3, b, =-3]

dx(t)
dt
| |
1 3
0
\ 2 ‘ |
-3
Figure-2.6

NOTE: The problem here is we have to define a differentiator in order to represent the time domain signal as
set of impulses. Thus we need an alternative way of representing the signal.

2.3 Signals Versus Vectors
There is a strong connection between signals and vectors. Signals that are defined for only a finite
number of time instants (say N) can be written as vectors (of dimension N). Thus, consider a signal g(t) defined
over a closed time interval [a, b]. Let us pick N points uniformly on the time interval [a, b] such that
tt=at,=a+e, b=a+2e, t,=a+(N-1)e, e=%
Then we can write a signal vector g as an N-dimensional vector
g = [9(ty) 9(t,) ... 9(ty)]
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This relationship clearly shows that continuous time signals are straight forward generalizations of finite
dimension vectors. Thus, basic definitions and operations in a vector space can be applied to continuous time signals
as well. In a vector space, we can define the inner (dot or scalar) product of two real-valued vectors x and g as

<x,g> = |g| x| cos®
When 6 is the angle between vectors x and g.

By using this definition, we can express ||x|, the length (norm) of a vector x as

I = <x x>

Remember: This concept forms the basis of digital communication system.

2.3.1 Decomposition of a Signal and Signal Components

The concepts of vector component and orthogonality can be directly extended to continuous time
signals. Consider the problem of approximating a real signal g(t) in terms of another real signal x(t) over an
interval [t,, t,].

9(t) = ex(1)
[Cotnat 4
e= # =Ek gt) x()at  (where, E, = Energy of signals)
j[ Bt Exh
:

NOTE If a signal g(f) is approximated by another signal x(f) as

9(t) = ex(t)
then the optimum value of e that minimizes the energy of the error signal in this

approximation is given by above equation.

2.4 Orthogonal Signal Set

In this section we show a way of representing a signal as a sum of orthogonal set of signals. Infact, the
signals in this orthogonal set form a basis for the specific signal space. Here again we can benefit from the
insight gained from a similar problem in vectors. We know that a vector can be represented as a sum of orthogonal
vectors, which form the coordinate system of a vector space.

24.1 Orthogonal Signal Space
We continue with signal approximation problem, using clues and insights developed for vector
approximation. We define orthogonality of a signal set x,(t), x,(1),...x(t) over a time domain ©.

0 m#n
E, m=n

[xm(®xn(at = {

If all signal energies are equal to unity £, = 1, then the set is normalized and is called an orthonormal set.

An orthogonal set can always be normalized by dividing x, () by \/E_n for all n. A signal g(t) over the time domain

O can be represented by a set of N mutually orthogonal signals x,(t), x,(f), .... x(?):
g(t) = Cyx,(1) + Cox (1) + ... + Cpxp (1)

N
= 2 C,x, (D)
n=1
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It can be shown that £, the energy of the error signal e(1) in this approximation, is minimized if we choose
g(t)x(t)dt .
C, = .[te@ n = ijg(t)xn(t)dt n=1,2, .. N
Hfar B
[IEAG
NOTE : Ifthe orthogonal set is complete, then the error energy £, — 0.

Remember: Orthogonal signal set forms the basis signals set for the representation of signals just like the

coord

2.5

inate axis are used in maps to represent a point.

The Fourier Series
Let gp(t) represent a periodic signal with period to. With the help of Fourier series, we are able to resolve

the signal into infinite sum of sine and cosine signals. An alternative way of saying this definition can be we break
up the periodic signal gp(t) into an infinite sum of harmonics which helps us to define the signal in the frequency

domain.

2.5.1

2.5.2

There are two ways to represent the Fourier series.

(1)  Trigonometric Fourier series
(2)  Exponential Fourier series

Trigonometric Form of Fourier Series
The expression may be expressed as.

9,0 = a +Z{an 008[217t_nt]+ bnsin(ZT;m J:|

n=1 0 0

The above equation is termed as Synthesis Equation. Thus the periodic signal gp( t) is now represented
as set of orthogonal signal.
Where the coefficients a, and b, represents the unknown amplitudes of the cosine and sine forms,

. L . 1
respectively. The quantity with n/7, represents the n™ harmonic of the fundamental frequency f, = T
0
Now, we need to calculate the coefficient a,, b, and a, . The equation which are used to calculate these
value are known as Analysis Equation. The equations for the trigonometric Fourier series are given
below.

1T

%=-7Lg%mm
0

To To
2 To . [ 2rnt
b, = ij'o gp(t)sm( T ]dt

Exponential Form of Fourier Series
In the above expression of trigonometric Fourier series the orthogonal set used for the creation of the

periodic signal were sine and cosine terms. In the similar way we can represent the periodic signal in terms of an
infinite set of orthogonal complex exponential signals.
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Synthesis equation

gt)=Y Ce&™"; n=0,123...

n=—oo
Analysis equation
4T _ 1 To2 —jemnt
Cn — T_J'gp(t)e*/nwot O'f=? J. gp(t)e To at
0o 0 _15/2

NOTE : e+ C( andC_,areincomplex-conjugate pair when the signal gp(t) isareal signali.e. C,=C",

e C sare the spectral amplitudes of the spectral component C, g/2mnit.

2.5.3 Frequency Spectrum of Non-sinusoidal Wave
Amplitude of wave is ‘A’ and repetition rate is w/2r per second, then.

(c) Sawtooth wave: g,(f) = — (sinwt ——sin2of+—=sin3wt——sindot+...... )
NOTE From the analysis equation in trigonometric Fourier series we conclude that:

o The trigonometric Fourier series of an even function of time contains only D.C. term
and cosine terms.

o The trigonometric Fourier series of an odd function of time contains only sine terms.

m Given a periodic signal gp(t) as shown the figure below.

gp(D)

-7, -T2 TR T

Find the complex Fourier coefficient C,.

Solution:
(0 - A -T/2<t<T/2
Iott) = 0 for the remainder of the period
T/2 .
Now, C, = al f Aexp{ﬂ]dt
0-1/2 To

O
1l
®
/—‘\
—
Il
o
+
-
+
[\
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m The complex exponential Fourier series representation of a signal f(t) over
the interval (0, T) is

f( t) = +Z°° Le]’nnt
no A+ (nm)?
Determine:

(a) the numerical value of T,;
(b) the numerical value of A, if one of the components of f(t) is A cos 3nt.

Solution:
The standard representation of complex Fourier series of signal f(t) in given as

f(f) _ 2 Fnej21mf/T _ 2 ake/kwof (I)

N=—co K=—co
15
where, a = F== [fye ot (D)
0
Given that W= 3 _ 3 gimt (ii)
' T 4+ (my

(a) Comparing, equation (iii) with equation (i) we get,

1

=

. ~|

= 2

(b) At n= 3, one component of f(t) is

f,(h) = %6/3’” = %[COSBEH—jSian‘]
4+ (3m) 4+ (3m)
Similarly at n =—3, another component of (1) is
3 .
£(t) = ———e 3™
20 4+ (3m)?
3 -
= ———[cos3nt - jsin3nt]
4+(3m)
f.(t) + 1,(t) = 2~L0033m
! 2 4+ (3m)>
= %cos?mt
4+ (3m)
Comparing with A cos 3rt, we have,
A= O  _6a6ax10?
4 +9n°

“Parseval’s theorem” for power signal x(t)
It states that power of a signal x(t) may be defined in terms of its Fourier series coefficients. For the

trigonometric Fourier series,

Since, x(f) = Cy+ Y, C,cos(nayt +6),)

n=1
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— 2 2 . -1 bn
C,= (a2 +b? ; 8,=tan (——]

aﬂ
then power of x(t) is given by,

P. C§+% Y C:
n=1

For the exponential Fourier series,

since, Xy = C,+ Y, Ce"
(nn:?))
then power of x(1) is given by,
P, = ni G, f
For real x(1), | Cn| = Cin|

“Power Spectral Density” (PSD) may be treated as average power per unit bandwidth. It is generally
denoted by S().

i X@F _ aPe)

S) =
T T dw

. Total power of signal x(t) = Py
1= -

N P, = Eﬂs«mdw:i S(f)df

Also, PSD = S@) =21 ¥ |C,[-8(0-no,)

Nn=—oo

4T

where, C =

h T = j x(t)e et it

(@]

Since, |XT((D) |2= | X () |2, then average power is expressed as,

p. - X [S)do
o

Al

Remember e Infinite duration signals are power signals and also power is always additive in nature.
e (f)is a power signal but it is not a periodic signal.
e Allthe periodic signals are always power-signals but inverse is always not true.

2.6 Fourier Transforms of Signals

A periodic signal with period infinity is called aperiodic signal which has total finite energy, its frequency
domain representation will be a continuous spectrum obtained from the Fourier transform. So, we can say that an
aperiodic signal x(f) can be represented by a Fourier integral (rather than Fourier series).
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Let, x(1) X(w) then

X@) = T-a,= [ x(te”dt

—oo

where, a, = Fourier series coefficient
1 Tol2 ‘
= — j x(f) ket gt
To -To/2
as Ty—>
y
also, a, = ?X(w)|atm=km0
here = 2—“
W , o) = 7
x(t) a
I 1 I FS /,/‘/{ |l
5 I e Y e { ]
B I e i s L /1 [ ke
- -7, |0 T : A% 0 ([} e
(a) (b)
Figure-2.7
But when, T— o
then,
x(t) X (o)
F.T.
—o— | - faliA) N N
-1, lo T U o UV o

(a) (b)
Figure-2.8: (a)Aperiodicsignal (b) Continuous nature

The original signal x(t) is recovered by using the formula for inverse Fourier transform as:

x(t) = é [ X(@) &' do

NOTE : x(t)and X(w) form a Fourier transform pair.
In general, the Fourier transform X(w) is a complex function of frequency “»” so,
X) = | X(w) [
where, | X((o)| = Continuous amplitude spectrum of x(1).

0(w) = Continuous phase spectrum of x(1).
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2.,6.1 Fourier transform of rectangular pulse/gate function

A,l‘or_—T<1‘<l
2 2

Let, x(t) = Arect(i) =
T 0, elsewhere
FT of x(t) = Xw) = [ x(t)e™ at

—oo

1/2

. - - qt/2
Xa)= A | etoiat = 2]
2 Jo /2
jot/2 _ —jot/2
Xw) = %[L] = %s n(ﬂ)
® 2] 0}
sin(wt/2)
= Ari————~
Xw) T{ (01/2) }
Xo) = At Sa[ 8 )= Ac| SN
2 nft
= Atsinc (f1)
[ X(w)
— AT
TN
-6/t
I . 0 \Uy
\Uy—41t/r -2/t 27(/{ :1\Tf/‘t
Figure-2.9
NOTE X(o)
é sinc t SI;;‘EZ’ F.T. 1
—T 0 T ©
Find the Fourier transform of sinc 700t.
Solution:
. sin 700wt 1 sin 700t
Let t) = 700) = ——— = | |.2XF
e x(t) = sinc( ) 200 xt (700) -
X(w)
FT 1/700

—7007 0 700t o
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2.,6.2 Important Fourier Transform
S. No. x(t) X () X(f) Comment
1 et 1 >0 1 A i |
. e T u(t) PRy a 2+ )2 symmetric, complex
5 at 1 0 1 )
. e” u(-t) a—jo a> a—jor) Asymmetric, complex
2a 2a
—alt] == Real and even
3. € a2+’ a>0 a? +(2nfy? symmetric
4 -at ! 0 ! Multiplication of ¢
S — S -
. te™ u(t) @+ joy a (@+ j2rf ) ultiplication o
n gt ™ as0 L Multiplication of ¢
5. t e ut) @xjoy a (@t oy p
Real and even
6. 8(t) 1 1 symmetric
Real and even
7. A 21 Ad() AJ(f) symmetric
8. efmot 218(0 — ay) &f—1p) Frequency shifting
1 Used in modulation
9. cos ayt (- @) + &(w + @y)] 5[5(f —To)+3(f +1)] property
. . J Used in modulation
10. sin ayt JHd(o+ @p) — - )] E[B(f +1y)+8(F —1f)] property
11. u(t) j%) + 108( ) % + % Unit step function
12 ] 2 1 Imaginary and odd
. sgn(t) o i symmetric
T j 1 jonf
13. —[o—oy)+w+ + —[(f —f)) +O(f + )] +———
cos eyt u(h) > [Ho—ay)+Hw+w)] eI 2[5( o) +0(f +1)] (2h, Y —(2n
i j 21,
14, in et ult J=[8(0+wy)— do—ay)] + L8(F +£,) - 8(F —fy )] + ——=<T0___
sin ayt u(t) > P 2[5( ) —&(F —f,)] O — 2ty
a [ a>0 21, L .
15. e~ sin ayt u(t) —(a +j(n)2 +w§ —(a +j2TCf)2 +21th2 ) Decaying sin function
—at a+jo a+ j2nf Decayin i
—F—, a>0 — <= a>0 ying cosine
16. e cos myt u(t) @+ jof +at (a+ j2nfy +2mf? function
17. rect (t/t) rSa(%) Tsinc(ft) Rectangular function
. [0} f
W wt t — i i
18. sinc(Wt) rec (27t W J rect(W J Sinc function
19, > &t-nT) Q) 2 - kay) fo >, f —kfy) Sampling function
n=-—o k=—o k =—oc0
20. o120’ o\2me 712 o\2me o 2712 Gaussian signal

Table-2.2
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