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CHAPTER

Transfer Function

2.1 Transfer Function and Impulse Response Function
In control systems, transfer functions are commonly used to characterise the input-output relationships
of components or systems that can be described by linear, time-invariant differential equations.

Transfer Function
Consider the linear time invariant system defined by the following differential equation:

ay"+ay" '+ ..+a, v +ay =byx" +b,x" ' +..+b, x +byx

where y is output of system and x is input, n > m
The transfer function is defined as,

Gls) = L(qutput)
L(I nDUt) Initial conditions are zero.
ale - 1) _ bos” + b8 .+ b, 1S+ by,

- - n n-1
X()  as"+as" ' +..+a,_s+a,

e Thetransfer function of a linear, time-invariant, differential equation system is defined as the ratio of
the Laplace transform of the output (response function) to the Laplace transform of the input (driving
function) under the assumption that all initial conditions are zero.

e The definition of transfer function is easily extended to a system with multiple inputs and outputs
(i.e. amultivariable system). In a multivariable system, a linear differential equation may be used to
describe the relationship between a pair of input and output variables, when all other inputs are set
to zero. Since the principle of superposition is valid for linear systems, the total effect (on any output)
due to all the inputs acting simultaneously is obtained by adding up the outputs due to each input
acting alone.

2.2 Poles and Zeros of a Transfer Function
The transfer function of a linear control system can be expressed as
Gls) = A8) _Kls=s)(s-5))..(s=3,)
B(s) (5-5,)(S—8p)...(s—5y)
where Kis known as gain factor of the transfer function G(s).
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In the transfer function expression, if sis put equal to s,, s, ... s, then it is noted that the value of the
transfer function is infinite. These s, s, ... s, are called the poles of the transfer function.

In the transfer function expression, if sis put equal to s;, s, ... s, then it is noted that the value of the
transfer function is zero. These s;, s, ... s, are called the zeros of the transfer function.

Multiple Poles and Multiple Zeros

The poles s, s, ... s,,and the zeros s,, s, ... s, are either real or complex and the complex poles or zeros
always appear in conjugate pairs.

It is possible that either poles or zeros may coincide; such poles or zeros are called multiple poles or

multiple zeros.

Simple Poles and Simple Zeros
Non-coinciding poles or zeros are called simple poles or simple zeros. From the transfer function
expression, it is observed that
e |f n> m, then the value of transfer function is found to be infinity for s = =, Hence, it is concluded
that there exists a pole of the transfer function at infinity («) and the multiplicity (order) of such a pole
being (n—m).
e If n< m,thenthe value of transfer function is found to be zero for s = . Hence, it is concluded that
there exists a zero of the transfer function at infinity (e) and the multiplicity (order) of such a zero
being (m-n).
Therefore, for a rational transfer function the total number of zeros is equal to the total number of poles.
The transfer function of a system is completely specified in terms of its poles, zeros and the gain factor.
Consider the following transfer function:
$+3

G = 6D +1+3)(5+1-3)
For the above transfer function, the poles are at
(@ s,=-2 (b) s,=-1-3jand (c) s,=-1+3j
The zeros are at s, = -3.
As the number of zeros should be equal to number of poles, the remaining two zeros are located at s = oo.

The pole-zero plot is plotted as shown:

+jw
X i
X denotes pole “ @ . i
O denotes zero -c 3 5 +c
X---~1 3
—j»

Fig. 2.1: Pole-zero plot

Poles and zero are those complex/critical frequencies which make the transfer function
infinity or zero.

Proper Transfer Functions

The transfer functions are said to be strictly properif the order of the denominator polynomial is greater
than that of the numerator polynomial (i.e. m > n). If m = n, the transfer function is called proper. The transfer
function is improperif n > m. Initial value theorem cannot be applied in such cases.

In the transfer function expression of a control system, the highest power of sin the numerator is generally
either equal to or less than that of the denominator.
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Sinusoidal Transfer Functions

The steady state response of a control system to a sinusoidal input is obtained by sinusoidal transfer
function, which is arrived by replacing s with jo in the transfer function of the system.

If the transfer function of a system is,

Ts) = C(s) _ K(s+5) (5+55)...(s+5,)

R(s) (s+s8,)(s+8p)....s+5p)

Then, sinusoidal (steady state) response is obtained by sinusoidal transfer function to a sinusoidal
excitation,
- Cljo)  K(jo+s)(jo+s,)....(Jo+s,
Mjw) = —=—=— : :
R(jo) (jo+s,)(jo+s,)....(Jo+s,
If the sinusoidal input A sin(wy?) is applied to the LTI system with transfer function T{jw), then the output
of the system c(1) is given as,

c(t) = AlT(jwp)|-sin(ept +£T(jay))

2.3 Properties of Transfer Function

Properties of the transfer function are summarized as follows:

1. The concept of transfer function is applicable to the linear, time-invariant systems only.

2. The transfer function of a system is defined as the Laplace transform of its impulse response.
Alternatively, it is the ratio of the Laplace transform of the output to the Laplace transform of the
input.

3. Allinitial conditions of the system are set to zero to calculate transfer function.

4. Thetransfer function is a property of a system itself, thus independent of the magnitude and nature
of the input variable or driving function.

5. The transfer function includes the information necessary to relate the input to the output, however, it
does not provide any information concerning the physical structure of the system. The transfer
functions of many physically different systems can be identical.

6. The transfer function of a continuous data system is expressed as a function of the complex variable(s)
only. It is not a function of time, real variable or any other independent variable. Similarly, for discrete
data system modelled by difference equations, the transfer function is expressed as a function of z.

Minimum and Non-minimum Phase Transfer Function

Transfer functions which have all poles and zeros in the left half of the s-plane i.e. system having no
poles and zeros in the RHS of the s-plane are minimum phase transfer functions. On the otherhand, a transfer
function which has one or more zeros in the right half of s-plane is known as “non-minimum phase transfer
function’.

1+sT,
= o 0< T, <Tq
Let, G,(s) T sT, 2 <l
1-sT,
and G,(S) = 1 0<T,<T
A9 1457, 2
. 1+ joT,
= G,(jo) = 120 (i
1+ joT,
and Gy(jo) = 110N (i)

1+ joT,
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The transfer function given by equation (i) represents the minimum-phase transfer function and equation (ii)
represents the non-minimum phase transfer function . The pole-zero configuration of above transfer function as
given by equation (i) and (ii) may be drawn as:

Img Img
Gy(jo) Gy (jo)
Pole Zero Pole zero
—X—0O Re % O Re
0 0
-1 -1 1
T, T, T, T,
Minimum phase transfer functions Non-minimum phase transfer functions

The minimum phase function has unique relationship between its phase and magnitude curves. Typical
phase angle characteristics are shown below:

¢

0°

—90°

-180°

w

It will be seen that larger the phase lags present in a system, the more complex are its stabilization
problems. Therefore in control systems, elements with non minimum phase transfer function are avoided as far as
possible. A common example of a non-minimum phase system is “transportation lag” which has the transfer
function,
e7oT=1/-wT Radian

1£-57.3®T degree

G(jw)

2.4 Applicability of Transfer Functions

e |tcan be used for solving differential equations and for system analysis described by those differential
equations.

e Transfer function describes the input-output behaviour of the system and does not deal with any
information concerning the internal structure of the system. Functional operation of a system can be
more readily visualized by examination of a block diagram rather than by the exhaustive analysis of
the equations describing the physical system. Therefore, for a linear time-invariant system one can
think of a system or its subsystems simply as interconnected blocks with each block described by
atransfer function. The analysis of such systems can easily be done by transfer function approach.

Advantages of Transfer Function Approach

1. It gives simple mathematical algebraic equation.

2. It gives poles and zeros of the system directly.

3. Stability of the system can be determined easily.

4. The output of the system for any input can be determined easily.
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If the transfer function of a system is known, the output or response can be studied for various forms
of inputs.

The stability of a time-invariant linear system can be determined from the denominator polynomial of
its transfer function, which is called characteristic equation of the system when equates to zero.
The system is unstable if any roots of the characteristic equation (poles of the transfer function) lies
in the right-hand side of s-plane.

Disadvantages of Transfer Function Approach

1.

o &~

2.5
(a)

(b) Open loop control system: In this configuration, feedback is

2.6

It is applicable only for LTI systems.

It does not take initial conditions into account.

The internal states of the system can not be determined.

Analysis of multiple input multiple output systems is cumbersome.
Controllability and observability can not be determined.

Transfer Functions of Control Loop Configurations

Closed loop control system: In this configuration, the Summing S
int
changes in the output are measured through feedback R(s) P E(s) = ,Zi.”ni c
and compared with input to achieve the control objective. A | ) | = )
E(s) = R(s) -B(s) )
B(s) = C(s) H(s) W
Cls) = E(s) G(s) L=
C (S) Ot S Fig. 2.2 : Closed-loop control system
G(s)
= C(s)[1+ G(s) H(s)] = G(s) R(s) R(s) G(s) C(s)
1+ G(s) H
. Cle) G(s) ‘ | (s) H(s)
R(s) - 1T G(s) H(s) Fig. 2.3 : Equivalent closed-loop system
. G(s)
Hence, closed loop transfer function [C.L.T.F] = T(s) =
1+G(s) H(s)

For unity feedback system,
H(s) = 1

R(s)

—

C(s)
disconnected. G(s) ———

Transfer function of open loop system = G(s)

Fig. 2.4 : Open-loop control system

Interacting & Non-Interacting Systems

Interacting Systems
Consider the figure,

Transfer function,

where,

Eo()  1/sCc 1 1
Es)  p, 1 SCR+1 (st+7)
sC

RC = Time constant

a
Il

R

T

Fig. 2.5 : RC circuit
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Consider the figure,
Assuming zero initial conditions, R R

In s-domain %ﬂ

Using KVL in loop-1 e, i =C &
! i
RI(S)+ —[14(s) - I,(s)] = E(9) i
sC Fig. 2.6 : RC circuits in cascade
Using KVL in loop-2
1 1
RI — [, (s)-1I = —— =
2(8)+ sC[ 2(8) = I4(s)] < [15(s)] = —Eo(s)

By eliminating 7,(s) and 1,(s) from the above equations, transfer function can be obtained as

Eq(s) 1 B 1
E(s) s?R?C®+3sRC+1 s°1°+3st+1
where, T = RC = time constant
1
Here, the transfer function of each of the individual RC circuits is (st+ 1) But, it is seen that overall
) o . ) . 1 1
transfer function of the two RC circuits connected in cascade is not equal to the product of twoi.e.| ——— ——
(st+1) (st+1)

butinstead itis 5—5———-
$°1° + 38T+ 1

This difference is explained by the fact that while deriving the transfer function of single RC circuits, it is
assumed that the output is unloaded. However, when the input of second circuit is obtained from the output of
first, a certain amount of energy is drawn by the first circuit and hence its original transfer function is no longer
valid. The degree to which the overall transfer function is modified from the product of individual transfer functions
depends upon the amount of loading.

Hence, it can be concluded that when two time constant elements are cascaded interactively, the overall
transfer function of such arrangement is not the product of two individual transfer functions, due to loading effects.

Non-Interacting Systems

Now consider, the system below having a subsystem block of constant gain Kinserted between two R-C
networks.

R R
T MW T T MW
E(s) C= v(s)| K V,(s) c= Eq(s)
: l : !

Fig. 2.7 : RC circuited non-interacting

Vi) _ 1 (9

X

=K; EO_(S): 1

E(s)  sRC+1' V(s V,(s) SARC+1

X

. E (s
Overall transfer function = () = K 5
Ei(s) (sRC+1)
So, when two systems are connected non-interactively, the overall transfer function of such arrangement

is product of two individual transfer functions, due to absence of loading effect.
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2.7 Standard Test Signals

1. Step Signal

f(t) = Au(t) i
A
here (1) 1 £>0
W ul =
’ 0,t<0
Laplace transform, R(s) = Als f
2. Ramp Signal r(t)
) = At t>0
0 <0
Laplace transform, R(s) = A/s? ;
3. Parabolic Signal
r(t)
2
) = Atc/2, t>0
0 t<0
Laplace transform, R(s) = A/s®
4, Impulse Signal :
0 t#0
H=1%
0 jS(t)dt=1
h ()
Laplace transform, R(s) = 1
Transfer function, G(s) = @
R(s)
C(s) = G(s) R(s) [t=0 :
Let, R(s) = Impulse signal = 1
C(s) = Impulse response = G(s) x 1 =T.F.
C
£ {lmpulse Response} = Transfer function = [%]

The transfer function of an LTI system is equal to the Laplace transform of the impulse response of the
system.

NOTE " d/dt (Parabolic Response) = Ramp Response

(] a/dt (Ramp Response) = Step Response
(] d/dt (Step Response) = Impulse Response

2.8 Impulse Response of Linear Systems

By definition, the impulse response of a linear system is the output response of the system when the
input is a unit impulse. For a single input single (SISO) system, if r(f) = &(1), then transfer is,
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2.9

But, R(s) = L[a(H)] =1

G(s) = C(s)

Taking inverse Laplace transform on both sides m
o(f) = g(f)

where, g(t) is the impulse response of the system.
Thus, Laplace transform of impulse response gives transfer function.
For a MIMO system, an impulse response matrix must be defined as,

a(t) = L[G(s)]
In time domain it can be shown that,

ot) = g(t) = (1)
or, c(f) = Tr(t) glt—1)dt

c(t) — output in time domain.
r(t) — input signal in time domain.

Analogous Systems
In the analysis of linear systems, mathematical procedure for obtaining the solutions to a given set of

equations does not depend upon what physical system the equations represent. Therefore, if the response of one
physical system to a given excitation is determined, the responses of all other systems which can be described
by the same set of equations are known for the similar excitation function. Systems which are governed by the
same types of equations are called analogous systems. Thus on comparing equations (i), (ii), (i) and (iv),
following analogy can be developed:

Mechanical Electrical
Translation | Rotation | Force-voltage analogy Force-current analogy
F T Vv 1
M J L C
f f R 1/R
k k 1/C 1/L
X 0 Q I
v [0} i 14
Table

NOTE: From the two analogies it is clear that mass and spring elements are energy storage elements.

2.10 Transfer Function of Mechanical Systems

There are multiple ways to arrive to the transfer function of complex mechanical systems, which may be

classified as follows:

Direct Method

1. Mention the excitation and response (s) clearly in the system. Mark all the nodes/junctions.
Write down the force balance equations (D’Alembert’s principle) at each node.

Convert all equations in Laplace domain, with all initial conditions as zero.

Rearrange the variables in the equations to arrive to the input-output equation.

Output (response) to input (excitation) ratio is the desired transfer function.

o s
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Indirect Method

Draw the equivalent diagram by force-voltage (series) analogy or force-current (parallel) analogy.
Write down the KVL and/or KCL equations.

Take Laplace transform with zero initial conditions.

Rewrite the input (excitation) output (response) equation by substitution.

Find the transfer function.

a M L n o=

Nodal Method

In this method we draw the nodal diagram of the mechanical system keeping following point into account:
Number of principle nodes or nodes = Number of displacements.
Take an additional node which is a reference node (shows static point on earth).
Connect mass (or inertial mass) elements always between the principle node and reference node.
Connect other elements between the principle nodes or between principle nodes and reference
depending on their position.
5. Thus obtain the nodal diagram and write down the describing (differential) equations at each node.

Finally transfer function may also be deduced by transferring all equations in Laplace domain with zero
initial conditions.

N

2.11 Gear Train

A gear train is a mechanical device which transfers energy from one part of the system to other part
without any loss (ideally).
N = number of teeth on the circumference of gear wheel
r = radius of the gear wheel (m)
T = torque (N-m)
6 = angular displacement (radians)

T _h_8_ 8 _6

For two gear wheels: %

2 T2 r2 6-1 91 61 © 61 T 62
Nyt 8, oy o
Ny tp 8 o oy

Similarly, if N gear wheels are cascaded, Ny
(Gear 1)
0, o, o N
&z—x:ri:—y:—y:—y (Gear2)
N, T, 6 o o Gear system

where, output is taken at y'" gear and input applied at x" gear wheel.

Purpose of Gears

e (ears are mechanical structure, used as intermediate element between motors (shaft) and load.
e (ears are used for stepping up or stepping down either torque or speed.

e Gears are analogous to electrical transformers. Thus gear ratio is analogous to turn ratio or transformer
ratio.
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Draw the mechanical network for the system in figure given below and draw

its analogous electrical circuit.
I—V X4 I—P |—>x3

=
N

k3 ka
HAM— AVAVAVAV
k1 ko
ﬁ, M1 A]M,\,——E M2 VAVAVAV ; M3
- ——4F——E
QO “& 00 "B¢E QO

Solution:
The network diagram for the above system is shown in figure below:

k. k.
X 3 4
! AAAA X2 AAAA *3
\AAA vyvy

LOMI

AAM
V
=
Y

<
| N
AAMA
Wy
)
A\
H
w

.|||_

Equation for node ‘x,:
() = M, % + By x, + Ky x; + kg x; — k3 x,
Equation for node ‘x,":
Ky Xy = Kgxp, = My Xy + By Xy + Ky Xp + Ky Xp —Ky X3
or, My, +B, ¥y +(ky + kg +Ky)x, —Kgx; =k x3 =0
Equation for node ‘x;:
My Xy = k,x, =k, x4

or, My s +kyx3—Kyx, =0

avy
"at

. . v 1 1 1
Using force-current analogy,  i(f) +—+—|v,dt+—|v,dt——| v, dt
R, L1-[ 1 LSJ ! L3~[ 2

d
Czﬁ+v—2+ i+i+i jvzdt—ijv1dt—ifv3dt =0
da R, \L Ly L, Ly L,

d
and, C3£+ijv3dt—i‘|.v2dt=o
at L, L,

The analogous circuit based on force-current analogy is shown below:

vy ,16/&3)-\ Vo rgéé\ V3

) 1 < 1 1< 1 -

i(f) 8 C, R_15; n C, EZE: L Cy=
_ 1 1 1 1
where, i) = R0, Cy =M, Co= M, Co= My, k= ko=~ ks ===k, =—
L 2 Ly 4

B, = ! and B, .
17 g °"R

1 2
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Consider a satellite altitude control system with yaw angle 0. Let each jet
thrust be F/2 so that a torque T = f/is applied to the system. Let J be the moment of inertia about the axis
of rotation at the centre of mass. Determine the transfer function.

Solution:

Step-1: Write differential equation governing the system.

Step-2: Take Laplace transform of the differential equation assuming all initial conditions to be zero.
Step-3: Take the ratio of output 6(s) to input 7(s).

Applying Newton’s second law, the differential equation governing the system is,

a%e
J_ = T
ar?
Taking Laplace transform on both sides,
Js?0(s) = T(s)
Transfer function is given by,
LONSRE
T(s)  Js?
Derive the transfer function of a turbo-propeller engine having multiple input

variables (fuel rate and propeller blade angle) and multiple output variables (speed of engine rotation
and turbine temperature).

Solution:

The following equations may be considered for the given MIMO system:
Ci(8) = Gy4(8) Ry(8) + G,.(8) R,(s)
Cy(8) = G,(8) Ry(S) + G,,(8) Ry(8)

where, C,(s) = Transformed variable of speed of rotation
C,(s) = Transformed variable of turbine inlet temperature
R,(s) = Transformed variable of fuel rate

R,(s) = Transformed variable of propeller blade angle
Since given system is assumed linear, superposition principle holds:
G,,(s) = Transfer function between fuel rate and speed of rotation of engine with propeller
blade angle held at reference value (i.e. A,(s) = 0)
Similarly, we can define G,,(8), G,,(s) and G,,(S).
In matrix form, C(s) = G(s) R(s)

[C}(S)} _ [6%1(3) Gﬂz(s)} [Fﬂ(s)}
Co(s)|  [Ga(8) Gya(s) [ Rals)
where, G(s) represents the transfer function matrix.

Transfer function electrical network with current source. Obtain the transfer
function of the following network.

SABF V()

i ()

AMAA
VWV
w
e
N
]
l
o
)

AAA
VWV
Y|
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Solution:

Transfer Function

23

Transforming the given network in s-domain and writing equations for node voltages and branch currents.

Vy(s)

1Q

AAAA Vs(s) S Va(s)

eIO)

AAAA

\AAAJ

S
l
2/s p-

-~ 3/s

~
N
%)
")
o
*}
AA
VVVV

wW|®n

)(s+4)+VS} = %{\/3[§+28+1]+13(S+ 4)}

(SI3 + \/2)(8—22+28+ 1]+ I3(s+ 4)}

S 5 s°
I3 ?+28 +25+4 [+, ?+28+1

(%+I4)(S—;+ZSZ +25+ 4J+ \/2{§+28+1J}

3 3
S 02 Tey 2| S hos?
\/2(12+68 +38+3]+I4(2 +2s +28+4]}

1

4
3 %(S3+1032+28s+20)+%(%

253 +26° + 4s ]}

Yo

(2s* +9s° +185% + 445 + 20)

36

25* + 953 +185° + 445+ 20
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Example-2.5 Transfer function electrical network with voltage source.

2
O
1Q *
10 I
1H
1
! ! -~ 1F p 3 Vo(t)
+
12
V,(f) 1Q 1F
o
4
°
Calculate V(s)/V,(s).
Solution:
The equation for branch currents and node voltages are:
L=V -V, V, =, 1) (s+ 1)
1
I=(V,-V,)s V, = (12+IO)E
L=V, -V, Vi=V,-V,
Vi=1+V,
V5 s$+2
= <=+ lj+Vh=V|— |+]
s+1 0772 2(S+1) 0
1y s+2
=|—=+V, | — |+1
(s 4J(s+1j 0
P +25+2 S+2
V., = Iy| ——— V4| —
1 0[ S +s 4(S+1)
V. = (I, +1 )><l
4= V2T o)
Vi+1
= sV,=V, -V, +1,or V,=—1-20
4 1 4T 4o 4 s+1
V= 1o §+23+2_+w+% S+2
£+ s+1 | s+1

s

vl s+2 | Io[ S +45% +6s+2 _ V83+482+6s+2
(s+72 O (s+
)

s +s-1
Vi(s)  s®+4s° +65+2
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