QUANTITATIVE APTITUDE

(Basic Numeracy & Data Interpretation)

Comprehensive Study Course

CIVIL SERVICES EXAMINATION 2025

Published by

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016 Contact: 011-45124660, 8860378007 E-mail: infomep@madeeasy.in Visit us at: www.madeeasypublications.org

Quantitative Aptitude

© Copyright, by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2018 Second Edition: 2019 Third Edition: 2020 Fourth Edition: 2021 Fifth Edition: 2022 Sixth Edition: 2023

Seventh: 2024

QUANTITATIVE APTITUDE (Basic Numeracy & Data Interpretation)

Chapter Pa			
1.	Number System	1-20	
2.	HCF & LCM	21-32	
3.	Test of Divisibility & Indices		
4.	Linear & Quadratic Equations	51-63	
5.	Percentages	64-80	
6.	Averages		
7.	Ratio Proportion & Variation		
8.	Profit & Loss	110-119	
9.	Mixture & Alligation		
10.	Simple & Compound Interest		
11.	Sequence & Series	140-151	
12.	Time, Speed & Distance	152-169	
13.	Boats & Races	170-178	
14.	Time & Work	179-189	
15.	Pipes & Cisterns		
16.	Permutations & Combinations	197-219	
17.	Probability		
18.	Set Theory & Venn Diagrams	231-238	
19.	Geometry & Mensuration	239-248	
20.	Coordinate Geometry & Trignometry	249-255	
21.	Data Interpretation	256-277	
22.	Miscellaneous		
	Shortcuts		

000

UPSC SYLLABUS FOR CSAT

Total Marks: 200

Duration : Two hours

- Comprehension;
- Interpersonal skills including communication skills;
- Logical reasoning and analytical ability;
- Decision making and problem solving;
- General mental ability;
- Basic numeracy (numbers and their relations, orders of magnitude, etc.) (Class X level), Data interpretation (charts, graphs, tables, data sufficiency etc. Class X level);

Paper-II of the Civil Services (Preliminary) Examination will be a qualifying paper with minimum qualifying marks fixed at 33%. The questions will be of multiple choice, objective type.

PREFACE

The journey to civil service examinations is one that is filled with dedication, perseverance, and relentless hard work. The Civil Services Aptitude Test (CSAT) is a crucial part of this journey, as it serves as the gateway to the prestigious Indian Civil Services. It is with great pleasure and immense pride that we present to you this book on "Quantative Aptitude" prepared by the NEXT IAS team under the guidance of "Manjul Kumar Tiwari Sir".

The primary aim of this book is to provide aspirants with a thorough understanding of the CSAT examination pattern, the types of questions asked, and the best strategies to solve them. By providing detailed solutions to previous year questions, we hope to instill in you the confidence and ability to tackle any challenge that the CSAT may throw your way. 03 Chapter

Test of Divisibility & Indices

Test of Divisibility

A divisibility rule is a shorthand and useful way to determine whether a given number is divisible by a given divisor without actually performing the division, usually by examining its digits

Divisibility by 2

A number is divisible by 2 if the unit digit is zero or divisible by 2

Illus. 22, 42, 84 etc.

Divisibility by 3

A number is divisible by 3 if the sum of digits in the number is divisible by 3

Illus. In the number 5253,

Here, 5 + 2 + 5 + 3 = 15, which is divisible by 3 hence 5253 is divisible by 3

Divisibility by 4

A number is divisible by $4\,\mathrm{if}$ its last two digits are divisible by 4

Illus. 1652, here 52 is divisible by 4 so 1652 is divisible by 4.

Divisiblity by 5

A number is divisible by 5 if the unit's digits in number is 0 or 5 $\,$

Illus. 50, 505, 555 etc.

Divisibility by 6

A number is divisible by 6 if the number is even and sum of digits is divisible by 3

Illus. 5346 is an even number, also sum of digit

5 + 3 + 4 + 6 = 18 is divisible by 3

Divisibility by 8

A number is divisible by 8 if last three digits of it is divisible by 8

Illus. 47472 here 472 is divisible by 8 hence this number 47472 is divisible by 8

Divisibility by 9

A number is divisible by 9 if sum of its digits is divisible by 9

Illus. 108936 here 1 + 0 + 8 + 9 + 3 + 6 is 27 which is divisible by 9 and hence 108936 is divisible by 9

Divisibility by 10

A number is divisible by 10 if its unit digit is 0

Illus. 90, 900, 740 etc.

Divisibility by 11

A number is divisible by 11 if the difference of sum of digit at odd places and sum of digit at even places is either 0 or divisible by 11

- **Illus.** 1331, the sum of digits at odd place is 1 + 3 and sum of digit at even places is 3 + 1 and their difference is 4 4 = 0. So 1331 is divisible by 11.
- **Ex.** How many distinct values can x assume if 17327x4 is divisible by 8?

(a) 0	(b)	1
(c) 2	(d)	More than 2

Sol. (d)

x can take value from 0, 1, 2, ... 9.

To be divisible by 8 i.e., last 3 digits must be divisible by 8. i.e., 7x4 must be divisible by 8.

Putting x = 0, 1, ...9 and checking,

For x = 0, 4, 8; number is divisible by 8.

- **Ex.** If the number 31285x57y is divisible by 72, find x + y
- **Sol.** Number is divisible by 72

 \Rightarrow It should be divisible by both 8 and 9 First we will check the divisibility of 8

 \Rightarrow 57*y* must be divisible by 8

 \Rightarrow *y* = 6, so last three digit are 576

Now number becomes 31285x576 which is divisible by 9 so,

$$\operatorname{Rem}\left(\frac{3+1+2+8+5+x+5+7+6}{9}\right) = 0$$
$$\Rightarrow \operatorname{Rem}\left(\frac{37+x}{9}\right) = 0$$
$$\Rightarrow x = 8$$
So, $x + y = 6 + 8 = 14$

Cyclicity of Numbers

- Cyclicity of any number is about the last or unit's digit and how they appear in a certain defined manner
- Cyclicity of a number is used mainly for the calculation of unit digits

Cyclicity of 1

In 1^{*n*}, unit digit will always be 1

Cyclicity of 2

- $2^1 = 2$
- $2^2 = 4$
- $2^3 = 8$
- $2^4 = 16$ $2^5 = 32$
- $2^{6} = 64$
- $2^{7} = 128$

$$2^{8} = 256$$

After every four intervals it repeats so cycle of 2 is 2, 4, 8, 6

Illus. Find the unit digit of 2^{332}

Here 2, 4, 8, 6 will repeat after every four interval

till power 320, next digit will be 2, $\boxed{4}$. So unit

digit of 2³²² will be 4

Cyclicity of 3

- $3^1 = 3$ $3^2 = 9$ $3^3 = 27$
- 5 21
- $3^4 = 81$
- $3^5 = 243$
- $3^6 = 729$
- 3⁷ = 2187
- $3^8 = 6561$

After every four intervals 3, 9, 7 and 1 are repeated. So cycle of 3 is 3, 9, 7, 1. **NEXT IRS**

Illus. Find unit digit of 33¹³³

Sol. Cycle of 3 is 3, 9, 7, 1 which repeats after every four intervals till 33¹³². So, next unit digit will be 3

Cyclicity of 4

- $4^1 = 4$ $4^2 = 16$
- $4^3 = 64$
- $4^4 = 256$
- Cycle is 4, 6, i.e.
- Unit digit of 4^n depends on value of n

If *n* is odd unit digit is 4 and if *n* is even digit is 6

Illus. Find unit digit of 4^{52}

Sol. Since 52 is even number unit digit will be 6

- Cyclicity of 5
 - $5^1 = 5$
 - $5^2 = 25$
 - $5^3 = 125$
 - $5^4 = 625$

Unit digit will always be 5

Cyclicity of 6

- $6^1 = 6$
- $6^2 = 36$
- $6^3 = 216$
- $6^4 = 1296$

Unit digit will always be 6

- **Illus.** Find unit digit of $4^{29} \times 6^7$
- **Sol.** Unit digit of 4^{29} is 4 and unit digit of 6^7 is 6 so unit digit of $4^{29} \times 6^5$ will be $4 \times 6 = 24$ i.e. 4

Cyclicity of 7

 $7^{1} = 7$ $7^{2} = 49$ $7^{3} = 343$ $7^{4} = 2401$ $7^{5} = 16807$ $7^{6} = 117649$ $7^{7} = 823543$ $7^{8} = 5764801$ Cycle of 7 is 7, 9, 3, 1 **Illus.** Find unit digit of 17^{17}

Sol. Unit digit of 17^{17} is 7

Cycli	city of 8				Sol.	(a)				
	$8^1 = 8$							is 6 and the cyclicity o of (216) ²¹⁶ will be 6	• •	
	$8^2 = 64$						-	it of 217 is 7 and the cyc	licity	
	$8^3 = 512$					2			5	
	8 ⁴ = 4096					of 7 is four. As	$s \frac{217}{4} g$	ives the remainder 1, s	o the	
	$8^5 = 32768$					last digit of (2	17) ²¹⁷ w	vill be 7		
	So, cycle of 8 is 8					∴ Last digit o	of (216) ²	216 + (217) ²¹⁷ = Last dia	git of	
	Find unit digit of $18^{18} \times 28^{28}$ Unit digit of 18^{18} is 4 and unit digit of 28^{28} is 6.				(6 + 7)= 3	()		5		
Sol.	So unit digit of 18		0		Ex.	The unit digit	of the r	number $(4)^{400} \times (9)^{900}$ is		
⁻ vcli	city of 9			211.0., 1		(a) 3		(b) 6		
-y cii	$9^1 = 9$		Sol.	(c) 7 (b)		(d) 1				
	$9^{2} = 81$ $9^{3} = 729$ $9^{4} = 6561$ Cycle of 9 is 9, 1 In 9 ^{<i>n</i>} unit digit will be 9 if <i>n</i> is odd and unit digit will be 1 if <i>n</i> is even			501.		s even,	unit digit of $4^{400} = 6$			
					-		C	000		
					Similarly, as the cyclicity of 9 is two, and $\frac{900}{2}$		$\frac{900}{2}$			
					gives the zero remainder. So, again the last digit of 9^{900} will be the last term in the cycle of 9^{n} i.e., 1. Hence, unit digit of the product $4^{400} \times 9^{900}$ = Unit digit of (6 × 1) = 6					
Ex.	Find unit digit			Ex.	The rightmost non-zero digit of the nur		mber			
	$10^{10} + 11^{11} + 12^{11}$	² + 13 ¹³	+ 14^{14} + 15^1	5		$(40)^{2100}$ is		0		
Sol.	Unit digit of 10^{10} is 0					(a) 1 (c) 7		(b) 3 (d) 9		
	Unit digit of 11^{11} is 1 Unit digit of 12^{12} is 6				Sol.			(u) 9		
						As $(40)^{2100}$ can be written as $4^{2100} \times 10^{1200}$ so, th		o, the		
	Unit digit of 13 ¹	³ is 3				rightmost non-zero digit of 4^{2100} = Rightm				
	Unit digit of 14 ¹⁴ is 6					non-zero digit of $(4)^{2100}$				
	Unit digit of 15 ¹	⁵ is 5						2100		
	So unit digit of given sum will be $0 + 1 + 6 + 3 + 6 + 5 = 21$			+1+6+3+		The cyclicity	of 4 is	two. As $\frac{2100}{2}$ gives	zero	
7	6 + 5 = 21 i.e., 1	((2017	\2017 : ₋			remainder so,	the las	t digit of 4 ²¹⁰⁰ will be 6		
Ex.	The units digit of (a) 3	or (2017	(b) 7		Ren	nainder Th	eoren	n		
	(c) 1		(d) 9							
Sol.	(b)				Rem	ainder of exp	ression	$\frac{a \times b \times c}{n}$ is equal to	o the	
	The last digit of four. So, the las term in the cycle	t digit o	f (2017) ²⁰¹⁷ v				sion $\frac{a_n}{a_n}$	$\frac{b_n \times b_n \times c_n}{n}$,		
-					when	re, a_n is remaind	ler whe	n <i>a</i> is divided by <i>n</i>		
Ex.	The unit digit of (a) 3	· (∠10) ⁻¹	(b) 7					en <i>b</i> is divided by <i>n</i> , and	d	
	(c) 5		(d) 9			c_n is remained	ler whe	en <i>c</i> is divided by <i>n</i>		

- **Illus.** Find the remainder of $13 \times 17 \times 19$ when it is divided by 7
- Sol. Remainder of $\frac{13}{7} = 6$ Remainder of $\frac{17}{7} = 3$ Remainder of $\frac{19}{7} = 5$ \therefore Remainder of $\frac{13 \times 17 \times 19}{7}$ = Remainder of $\left(\frac{6 \times 3 \times 5}{7}\right) =$ Remainder $\frac{90}{7} = 6$
- Ex. Find the remainder when 5⁵ is divided by 3(a) 0(b) 1
 - (c) 2 (d) None of these

Sol. (c)

$$\frac{5^5}{3} = \frac{5 \times 5 \times 5 \times 5 \times 5}{3}$$

Using remainder theorem,

$$\operatorname{Rem}\left(\frac{5^5}{3}\right) = \operatorname{Rem}\left(\frac{2 \times 2 \times 2 \times 2 \times 2}{3}\right) = -\left(\frac{32}{3}\right) = 2$$

Ex. Find the remainder when 2⁷² is divided by 7
(a) 1
(b) 3
(c) 5
(d) 6

Sol. (a)

 $2^{72} = (2^3)^{24} = (8)^{24}$ ∴ Remainder $\left(\frac{8^{24}}{7}\right) = \text{Rem}\left(\frac{1^{24}}{7}\right) = 1$

Ex. Find the remainder when (237 × 2318 – 1235 + 4127) is divided by 4

Sol.
$$\operatorname{Rem}\left(\frac{237 \times 2318 - 1234 + 412}{4}\right)$$
$$= \operatorname{Rem}\left(\frac{237}{4}\right) \times \operatorname{Rem}\left(\frac{2318}{4}\right) - \operatorname{Rem}\left(\frac{1235}{4}\right)$$
$$+ \operatorname{Rem}\left(\frac{4127}{4}\right)$$
$$= 1 \times 2 - 3 + 3 = 2$$

Powers / Indices

- It is used to show or write large expressions
- When a quantity repeatedly multiplies with itself

- $a \times a \times a \times a \dots m$ times = a^m
- Here *a^m* is called *mth* power of *a*

Illus. $2 \times 2 \times 2 \times 2 = 16 = 2^4$

$$a^{m}$$
—power/index
base

Laws/Rules of Indices:

1.
$$\underline{a}^m \times \underline{a}^n = a^{powers add}$$

Illus. $2^3 \times 2^4 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^7 = 2^{(3+4)}$

$$2. \quad \frac{a^m}{a^n} = a^{m-n}$$

Illus.
$$\frac{2^6}{2^4} = \frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 2} = 2^2 = 2^{(6-4)}$$

3.
$$(a^m)^n = a^{m \times n} = (a^n)^m = (a^m)^n$$

Illus. $(2^4)^3 = (2 \times 2 \times 2 \times 2)^3 = 2 \times 2 \dots 12$ times = $2^{12} = 2^{3 \times 4}$ = $(2^3)^4 = 2^{12}$

 $4. \quad (ab)^m = a^m \times b^m$

Illus.
$$(2 \times 3)^4 = (2 \times 3 \times 2 \times 3 \times 2 \times 3 \times 2 \times 3)$$

= $(2 \times 2 \times 2 \times 2) \times (3 \times 3 \times 3 \times 3)$
= $2^4 \times 3^4$

$$5. \quad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Illus. $\left(\frac{2}{3}\right)^5 = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{2^5}{3^5}$

6. $a^0 = 1$ (*a* may be any number) Note: 0^0 is undefined

7.
$$a^{-m} = \frac{1}{a^m}$$

8.
$$a^m = a^n$$

If base is same then power is same *i.e.*, m = n

Illus. Find x if
$$\left(\frac{a}{b}\right)^{2x-4} = \left(\frac{b}{a}\right)^{4x-3}$$

Sol. $\left(\frac{a}{b}\right)^{2x-4} = \left(\frac{a}{b}\right)^{-4x+3}$

4

$$\Rightarrow 2x - 4 = 4x - 3$$

$$\Rightarrow -1 = 2x$$

$$\Rightarrow x = -\frac{1}{2}$$
Ex. If $4^{x}2^{y} = 128$ and $3^{3x} \times 3^{2y} = 9^{xy}$, find $x + y$
Sol. $2^{2x+y} = 2^{7}$ and $3^{3x+2y} = 3^{2xy}$

$$\Rightarrow 2x + y = 7 \text{ and } 3x + 2y = 2xy$$

$$\Rightarrow x + y + 7 = 2xy$$

$$\Rightarrow x + 7 + (7 - 2x) = 2x(7 - 2x)$$

$$\Rightarrow 4x^{2} - 15x + 14 = 0$$

 $4x^{2} - 8x - 7x + 14 = 0$
 $(4x - 7)(x - 2) = 0$

$$\Rightarrow x = 2, \frac{7}{4}$$

 $y = 3, \frac{7}{2}$
 $\therefore x + y = 5, \frac{21}{4}$
Ex. Solve: $\frac{(a + b)^{4} \times (a + b)^{\frac{-3}{6}}}{\sqrt{(a + b)}}$
Sol. $\frac{(a + b)^{4} \times (a + b)^{\frac{1}{2}}}{(a + b)^{\frac{1}{2}}} = (a + b)^{\frac{7}{2} - \frac{1}{2}} = (a + b)^{3}$
Ex. Solve: the following expression:
 $\frac{(a + b)^{3} \div (a + b) \div (a + b)}{[2(a + b)^{\frac{7}{2}} - (a + b)^{\frac{7}{2}}] \times (a + b)^{\frac{1}{2}}}$
Sol. $\frac{(a + b)^{3} \times \frac{1}{(a + b)^{\frac{7}{2}}} \times (a + b)}{(a + b)^{\frac{7}{2}} \times (a + b)^{\frac{1}{2}}}$
Ex. Solve the following expression:
 $\frac{(a + b)^{3} \times \frac{1}{(a + b)^{\frac{7}{2}}} \times (a + b)}{(a + b)^{\frac{7}{2}} \times (a + b)^{\frac{1}{2}}}$
(a + b) $\frac{(a + b)^{3} \times \frac{1}{(a + b)^{\frac{7}{2}}} \times (a + b)}{(a + b)^{\frac{7}{2}} \times (a + b)^{\frac{1}{2}}}$
(a + b) $\frac{(a + b)^{3} \times \frac{1}{(a + b)^{\frac{7}{2}}} \times (a + b)}{(a + b)^{\frac{7}{2}} \times (a + b)^{\frac{1}{2}}}$

Surds

Surds are powers in fractions (i.e., when power < 1)

Illus. $a^2 = a \times a$ Let $a^2 = b$

Then,
$$a = b^{\frac{1}{2}} = \sqrt{b}$$

- \sqrt{b} square root of *b*
- Similarly, $b^{\frac{1}{3}}$ cube root of b
- $b^{\frac{1}{n}}$ or $\sqrt[n]{b}$ surd of order '*n*' •
- (By default '2') $\rightarrow \overline{b}$ ٠

Laws/Rules of Surds:

Rules of Surds are similar to that of indices, we can

simply replace *m* by
$$\frac{1}{n}$$

1.
$$a^b \times a^c = a^{b+c}$$

 $a^{1/b} \times a^{1/c} = a^{1/b+1/c}$

Illus. $2^{1/2} \times 2^{1/3} = 2^{5/6}$

2.
$$(\sqrt[n]{a})^n = (a^{1/n})^n = a^{n/n} = a$$

3.
$$\left(\frac{a}{b}\right)^{1/n} = \frac{a^{1/n}}{b^{1/n}}$$

4.
$$(a^{1/n})^m = a^{m/n} = (a^m)^{1/n} = \sqrt[n]{a^m}$$

5.
$$\sqrt[n]{\left(\frac{m}{\sqrt{a}}\right)} = \sqrt[n]{\left(\frac{1}{a^{\frac{1}{m}}}\right)} = \left(a^{\frac{1}{m}}\right)^{\frac{1}{n}} = a^{\frac{1}{m} \times \frac{1}{n}} = a^{\frac{1}{mm}}$$
$$= \sqrt[nm]{a} = \left(a^{\frac{1}{n}}\right)^{\frac{1}{m}} = \sqrt[nm]{\left(\sqrt[n]{a}\right)}$$

6.
$$(ab)^{\frac{1}{m}} = (a)^{\frac{1}{m}} (b)^{\frac{1}{m}}$$

Ex. Solve
$$(64)^{-\frac{2}{3}} \times \left(\frac{1}{4}\right)^{-2}$$

Sol.
$$\frac{1}{(64)^{2/3}} \times 4^2 = \frac{16}{\left(\sqrt[3]{64}\right)^2} = \frac{16}{16} = 1$$

Ex. If
$$(\sqrt{3})^5 \times 9^2 = 3^k \times 3\sqrt{3}$$
, then $k = ?$

Sol.
$$3^{5/2} \times 3^4 = 3^k \times 3^{1+\frac{1}{2}}$$

 $\frac{5}{2} + 4 = k + 1 + \frac{1}{2}$
 $k = 5$

Ex. Arrange the following in ascending/descending order.

 $2^{1/2}, 3^{1/3}, 4^{1/4}, 6^{1/6}, 12^{1/12}$

Sol. If a > b

 $\Rightarrow a^m > b^m$ for a, b, m positive

Method to solve such questions:

Take LCM of denominators of powers and raise the powers by it i.e. change powers from fraction to whole numbers.

LCM
$$(2, 3, 4, 6, 12) = 12$$

 $\Rightarrow 2^{1/2}, 3^{1/3}, 4^{1/4}, 6^{1/6}, 12^{1/12} = 2^6, 3^4, 4^3, 6^2, 12^1$
 $\Rightarrow 64, 81, 64, 36, 12$

 \therefore Largest number = 81

i.e., largest number = $3^{\frac{1}{3}}$

Ex. Compare $\sqrt{7} - \sqrt{5}$, $\sqrt{5} - \sqrt{3}$, $\sqrt{9} - \sqrt{7}$, $\sqrt{11} - \sqrt{9}$ to find the greatest number

Sol.
$$\sqrt{7} - \sqrt{5} = \sqrt{7} - \sqrt{5} \times \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} + \sqrt{5}} = \frac{7 - 5}{\sqrt{7} + \sqrt{5}}$$

$$=\frac{2}{\sqrt{7}+\sqrt{5}}$$

Similarly,

$$\frac{2}{\sqrt{7}+\sqrt{5}}$$
, $\frac{2}{\sqrt{5}+\sqrt{3}}$, $\frac{2}{\sqrt{9}+\sqrt{7}}$, $\frac{2}{\sqrt{11}+\sqrt{9}}$

Smallest denominator = greatest fraction

Therefore, greatest number = $\frac{2}{\sqrt{5} + \sqrt{3}}$

Ex. Arrange the following: $12 - 2\sqrt{35}, 8 - 2\sqrt{15}, 16 - 2\sqrt{63}, 20 - 2\sqrt{99}$

Sol.
$$12 - 2\sqrt{35} = 7 + 5 - 2\sqrt{7} \times \sqrt{5} = (\sqrt{7} - \sqrt{5})^2$$

Similarly,
$$8 - 2\sqrt{15} = (\sqrt{5} - \sqrt{3})^2$$

 $16 - 2\sqrt{63} = (\sqrt{9} - \sqrt{7})^2$
 $20 - 2\sqrt{99} = (\sqrt{11} - \sqrt{9})^2$

Now,
$$\left(\sqrt{7} - \sqrt{5}\right)^2 = \left(\frac{2}{\sqrt{7} + \sqrt{5}}\right)^2$$

Similarly, $\left(\sqrt{5} - \sqrt{3}\right)^2 = \left(\frac{2}{\sqrt{5} + \sqrt{3}}\right)^2$

$$(\sqrt{9} - \sqrt{7})^2 = \left(\frac{2}{\sqrt{9} + \sqrt{7}}\right)^2$$
$$(\sqrt{11} - \sqrt{9})^2 = \left(\frac{2}{\sqrt{11} + \sqrt{9}}\right)^2$$

Greatest denominator = Smallest fraction ∴ in ascending order,

$$20 - 2\sqrt{99}, 16 - 2\sqrt{63}, 12 - 2\sqrt{35}, 8 - 2\sqrt{15}$$

Square Root

The square root of a number is that number, the square of which is equal to the given number. There are two types of square roots of a number, positive and negative. It is denoted by the sign $\sqrt{-1}$

Illus. 64 has two square roots 8 and -8, because $(8)^2 = 64$

and $(-8)^2 = 64$. Hence, we (can write $\sqrt{64} = \pm 8$).

Methods to Find Square Root

There are primarily 2 methods to find square root of a number.

Method I: Prime Factorisation Method

Step 1: Express the given number as the product of prime factors.

Step 2: Arrange the factors in pairs of same prime numbers.

Step 3: Take the product of these prime factors taking one out of every pair of the same primes. This product gives us the square root of the given number.

Illus. Find the square root of 1156.

Sol. Prime factors of $1156 = 17 \times 17 \times 2 \times 2$ $\Rightarrow 1156 = 17 \times 17 \times 2 \times 2$

Now, taking one number from each pair and multiplying them, we get

 $\sqrt{1156} = 17 \times 2 = 34$

Method II: Division Method

Understand with the help of following illustration,

Illus. Find the square root of 3249.

Sol. Step 1: In the given number, mark off the digits in pairs starting from the unit digit. Each pair and the remaining one-digit is called a period.

38

Step 2: Now, $5^2 = 25$; On subtracting 25 from 32 we get (7) as remainder.

Step 3: Bring down the next period i.e. 49 Now, the trial divisor is $5 \times 2 = 10$ and trial dividend is 749. So, we take 107 as divisor and put 7 as quotient. The remaidner is 8 now.

Step 4: This process (Step II and III) goes on till all the periods (pairs) come to an end and we get remainder as 0 (zero) now

	57
	3249
5	-25
107	749
	-749
	0

Hence, the required square root = 57

- Ex. What is the square root of 12769?
- **Sol.** \therefore Required square root = 113

	113
	12769
1	-1
21	027
	-21
223	669
	-669
	0

Square Root of a Fraction

To find square root of a fraction, we have to find the square roots of numerators and denominators, separately.

Ex. Find $\sqrt{\frac{2809}{64}}$

Sol.
$$\sqrt{\frac{2809}{64}} = \frac{\sqrt{2809}}{\sqrt{64}} = \frac{53}{8}$$

Ex. Find the square root of $\frac{2450}{32}$

Sol.
$$\sqrt{\frac{2450}{32}} = \sqrt{\frac{1225}{16}} = \frac{\sqrt{1225}}{\sqrt{16}} = \frac{35}{4}$$

Ex. Find the square of
$$\sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}}$$

Sol. Let
$$x = \sqrt{5\sqrt{5\sqrt{5\sqrt{5}\dots\infty}}}$$

 $\therefore x^2 = 5\sqrt{5\sqrt{5\sqrt{5}\dots\infty}} = 5x$
 $\Rightarrow x^2 = 5x$
 $\Rightarrow x = 5$

Ex. Find the square of $\sqrt{42 + \sqrt{42 + \sqrt{42 + \dots}}}$

Sol. Let
$$x = \sqrt{42 + \sqrt{42 + \sqrt{42 + \dots \infty}}}$$

$$\Rightarrow x^2 = 42 + \sqrt{42\sqrt{42 + \sqrt{42}}} = \infty = 42 + x$$

$$\Rightarrow x^2 - x - 42 = 0$$

$$\Rightarrow (x - 7)(x + 6) = 0$$

$$\Rightarrow x = 7 (x \text{ can't be negative})$$

Cube Root

The cube root of a given number is the number whose cube is the given number. The cube root is denoted by the sign $\sqrt[3]{}$

Illus. (i)
$$\sqrt[3]{8} = \sqrt[3]{2 \times 2 \times 2} = 2$$

(ii) $\sqrt[3]{512} = \sqrt[3]{8 \times 8 \times 8 \times} = 8$

Method to find cube root of a given number:

Prime Factorisation Method

Step 1: Express the given number as the product of prime factors

Step 2: Arrange the factors in a group of three of same prime numbers

Step 3: Take the product of these prime factors picking one out of every group (group of three) of the same primes. This product gives us the cube root of given number

Illus. Find the cube root of 10648

Sol. Prime factors of $10648 = (2 \times 2 \times 2) \times (11 \times 11 \times 11)$

$$\Rightarrow \sqrt[3]{10648} = \sqrt[3]{2 \times 2 \times 2 \times 11 \times 11 \times 11}$$

Now, taking one number from each group of three, we get

$$\sqrt[3]{10648} = 2 \times 11 = 22$$

Ex. Find the value of
$$\sqrt[3]{\frac{0.000729}{0.032768}}$$

Sol. $\sqrt[3]{\frac{0.000729}{0.032768}} = \sqrt[3]{\frac{729}{32768}} = \sqrt[3]{\frac{9 \times 9 \times 9}{32 \times 32 \times 32}} = \frac{9}{32}$

Ex. Find the cube root of -5832

Sol.
$$\sqrt[3]{(-5832)} = -\sqrt[3]{5832} = -\sqrt[3]{18 \times 18 \times 18} = -18$$

Logarithms

- Logarithm is used to answer how many times base must be multiplied by itself to get another number.
- $a^x = c$ can be written as $\log_a^c = x$ where, a-basex – Power/index *c* – number

Illus. $2^3 = 8$

 $\log_{2} 8 = 3$

Note:

 $\log_a a = 1$

 $\log_a^1 = 0$

Laws/Rules of Logarithms

1.
$$\frac{\log_a(m \times n)}{c} = \frac{\log_a m}{x} + \frac{\log_a n}{y}$$
$$\Rightarrow m \times n = a^c$$
also, $m = a^x$
$$n = a^y$$
$$\Rightarrow m \times n = a^{x+y}$$
$$\Rightarrow x + y = c$$

2.
$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$

 $\log_a(m^n) = n \log_a m$ 3.

Illus. $\log_a(m \times m...) = \log_a m + \log_a m ... = n \log_a m$

5.
$$\log_a b = \frac{\log_n b}{\log_n a}$$

6.
$$\log_a b = \frac{\log_n b}{\log_n a} = \frac{1}{\frac{\log_n a}{\log_n b}} = \frac{1}{\log_b a}$$

Points to Remember:

- By default base is 10
- When base = 10, it is called common $\log (\log)$
- When base = e, it is called natural log (ln)

Find $a^{\log_a n}$ Ex.

Sol.
$$a^{\log_a n} = \mathbf{k}$$

 $\log_a n \log a = \log k$

$$\Rightarrow \frac{\log n}{\log a} \log a = \log k$$

 $\Rightarrow k = n$

If $x = y^{a}$, $y = z^{b}$, $z = x^{c}$, abc = ?Ex.

Sol.
$$logx = a logy$$

 $logy = blogz$
 $logz = clogx$
 $abc = \frac{\log x}{\log y} \times \frac{\log y}{\log z} \times \frac{\log z}{\log x}$

Solved Examples

= 1

0.1 The numbers 1 to 18 are written side by side as follows 1234567891011 ... 1718. If the number is divided by 9, then what is the remainder?

Sol. (a)

Sum of digits from 1 to 9 = 45

Sum of digits from 10 to 18 = 9 + 36 = 45

Sum of the digits from 1 to 18 = 45 + 45 = 90

Since, sum is divisible by 9

 \therefore , Remainder = 0

Q.2 If *x* and *y* are the two digits of the number 213 *xy* such that this number is divisible by 60, then maximum of x + y is equal to :

(c) 6 (d) 8

Sol. (c)

Since 213xy is divisible by 5 as well as 2, so y = 0Now, 213 x0 must be divisible by 12 So, 213x0 must be divisible by 4 and 3

For divisibility by 4

x = 0, 2, 4, 6, 8

For divisibility by 3,

2 + 1 + 3 + x + 0 = 6 + x must be divisible by 3

ΠE	XT IRS Qu	antitative Ap	otitude 41
	$\Rightarrow x = 0 \text{ or } 6$		So, $X = 7$ satisfies the condition
	For $x + y$ as maximum,	Q.7	Fill in the blank in the number 4 _ 56 so as to make
	<i>x</i> must be 6	Q.,	it divisible by 33
	$\Rightarrow x + y = 6$		(a) 3 (b) 4
Q.3	$10^{10} + 11^{11} + 12^{12} + 13^{13} + 14^{14} + 15^{15}$ unit digit of		(c) 5 (d) Data Insufficient
	10 ¹⁰ is 0	Sol.	(a)
Sol.	Unit digit of 11 ¹¹ is 1		4 _ 56 is divisible by 33 if and only if it is divisible
	Unit digit of 12 ¹² is 6		by 3 and 11
	Unit digit of 13 ¹³ is 3		4_56 will be divisible by 3 if _ will be equal to 0, 3,
	Unit digit of 14 ¹⁴ is 6		6,9
	Unit digit of 15 ¹¹ is 1		4 _ 56 is divisible by 11 if (4 + 5) - (_ + 6) will be
	So unit digit of given sum will be		divisible by 11, so _ should be 3
	0 + 1 + 6 + 3 + 6 + 5 = 21 i.e. 1	Q.8	Check if the expression 333 ⁵⁵⁵ + 555 ³³³ is divisible
Q.4	Find the remainder of $\frac{9^{99}}{8}$		by 2
Q.1	8	Sol.	Check for divisibility by 2
	9^{99} $(8+1)^{99}$		$\left[(333)^{555} + (555)^{333} \right]$
Sol.	$\frac{9^{99}}{8} = \frac{(8+1)^{99}}{8}$		$\operatorname{Rem}\left\{\frac{\left(333\right)^{555} + \left(555\right)^{333}}{2}\right\}$
	According to Remainder theorem, remainder wil	1	
	-		$\Rightarrow \operatorname{Rem}\left(\frac{1^{555} + 1^{333}}{2}\right)$
	be equal to remainder of the expression $\frac{1^{99}}{8}$ which	ı	\rightarrow nem $\begin{pmatrix} 2 \end{pmatrix}$
			\Rightarrow Rem = 0
	is equal to 1		\Rightarrow Divisible by 2
Q.5	Find remainder of $\frac{5^{100}}{7}$	Q.9	Find the remainder of 2^{100} when divided by 3
Q .5	7		(a) 2 (b) 0
	(a) 1 (b) 2		(c) 1 (d) None of these
	(c) 4 (d) None of these	Sol.	(c)
Sol.	(b)		(2^{100}) $((2^{10})^{10})$
	$\frac{5^{100}}{7} = \frac{(5^2)^{50}}{7} = \left[\frac{3 \times 7 + 4}{7}\right]^{50} \Longrightarrow \operatorname{Rem}\left[\frac{(4)^{50}}{7}\right]$		Remainder of $\left(\frac{2^{100}}{3}\right) = R \left\{ \frac{\left(2^{10}\right)^{10}}{3} \right\}$
	$\Rightarrow \operatorname{Rem}\left[\frac{2^{100}}{7}\right] = \frac{(2^3)^{33} \times 2}{7} \Rightarrow \frac{(7+1)^{33}}{7} \times 2$		$((1024)^{10})$ (1024 1024 10 times)
			$\Rightarrow R\left\{\frac{(1024)^{10}}{3}\right\} \Rightarrow R\left(\frac{1024.102410 \text{ times}}{3}\right)$
	$\Rightarrow \frac{1 \times 2}{7}$		
	$\Rightarrow \frac{1}{7}$		$\Rightarrow R\left(\frac{1.1.110 \text{ times}}{3}\right) \Rightarrow \text{Remainder} = 1$
	\Rightarrow Remainder is 2		
Q.6	If X381 is divisible by 11, find the value of the	2	So, option 'c' is correct.
-	smallest natural number <i>X</i> ?		Find the units digit of $3^{69} \times 6^{59} + 7^{75}$
	(a) 3 (b) 4	Sol.	Unit digit = $3 \times 6 + 3 = 8 + 3 = 1$
	(c) 7 (d) 9	0.11	What is the remainder when 241 × 2210 1242
Sol.	(c)		What is the remainder when $241 \times 2310 - 1243 + 4127$ is divided by 4 ?
	X381 is divisible by 11 if $(X + 8) - (3 + 1)$ is divisible	2	

X381 is divisible by 11 if (X + 8) - (3 + 1) is divisible by 11

Sol. Using Remainder Theorem,

Remainder
$$\left(\frac{241 \times 2310 - 1243 + 41272}{4}\right)$$

= Remainder $\left(\frac{1 \times 2 - 3 + 3}{4}\right)$ = 2

- **Q.12** Find the remainder when $241^3 \times 2314^2 123^5 + 412$ is divided by 11
- Sol. Using Remainder Theorem,

Remainder
$$\left(\frac{241^3 \times 2314^2 - 123^5 + 412}{11}\right)$$

= Remainder $\left(\frac{10 \times 10 \times 10 \times 4 \times 4 - 2^5 + 5}{11}\right)$
= Remainder $\left(\frac{6 - 10 + 5}{11}\right) = 1$

- **Q.13** Find the remainder of $\frac{4^{33}}{7}$
- Sol. $4^{33} = (4^3)^{11} = 64^{11}$ Remainder $\left(\frac{64^{11}}{7}\right) = \text{Remainder}\left(\frac{1^{11}}{7}\right) = 1$
- Q.14 Find smallest number among the following

$$\frac{1}{\sqrt{3}-1}, \frac{1}{\sqrt{7}-\sqrt{5}}, \frac{1}{\sqrt{9}-\sqrt{7}}, \frac{1}{\sqrt{13}-\sqrt{11}}$$

Sol. $\frac{1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{2}$

Similarly,
$$\frac{\sqrt{7} + \sqrt{5}}{2}$$
, $\frac{\sqrt{9} + \sqrt{7}}{2}$, $\frac{\sqrt{13} + \sqrt{11}}{2}$

Therefore, smaller number = $\frac{1}{\sqrt{3}-1}$

Q.15 Find the largest number among $2\sqrt{3}$, $2\sqrt[4]{5}$, $\sqrt{8}$, $3\sqrt{2}$

Sol. LCM (2, 4) = 4

$$\Rightarrow [2(\sqrt{3})]^4, [2(\sqrt[4]{5})]^4, (\sqrt{8})^4, (3\sqrt{2})^4$$

$$\Rightarrow 144, 80, 64, 324$$

$$\therefore \text{ Largest number} = 3\sqrt{2}$$

Q.16 Find the value of $\sqrt{5+2\sqrt{6}} - \frac{1}{\sqrt{5+2\sqrt{6}}}$

Sol.
$$5+2\sqrt{6} = (\sqrt{2}+\sqrt{3})^2$$

 $\Rightarrow \sqrt{(\sqrt{2}+\sqrt{3})^2} - \frac{1}{\sqrt{(\sqrt{2}+\sqrt{3})^2}}$
 $= \sqrt{2}+\sqrt{3}-\frac{1}{\sqrt{3}+\sqrt{2}}$
 $= \sqrt{3}+\sqrt{2}-\frac{(\sqrt{3}-\sqrt{2})}{1} = 2\sqrt{2}$

Q.17 Rationalise $\frac{2}{\sqrt{3}}$

Sol. Rationalising means no root in denominator

$$\Rightarrow \qquad \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

Q.18 Arrange $\frac{1}{\sqrt[3]{12}}$, $\frac{1}{\sqrt[4]{29}}$, $\frac{1}{\sqrt{5}}$ in ascending order **Sol.** LCM (3, 4, 2) = 12 $\Rightarrow \frac{1}{29^3}$, $\frac{1}{12^4}$, $\frac{1}{5^6}$

Q.19 Find square root of $5 + \sqrt{6}$

Sol. Let,
$$\sqrt{5} + \sqrt{6} = \sqrt{x} + \sqrt{y}$$

 $\left(\sqrt{5} + \sqrt{6}\right)^2 = \left(\sqrt{x} + \sqrt{y}\right)^2$
 $\Rightarrow 5 + \sqrt{6} = x + y + 2\sqrt{xy}$

Comparing both sides,

$$5 = x + y$$
 ...(i)
and, $\sqrt{6} = 2\sqrt{xy}$

$$xy = \frac{3}{2}$$
 ...(ii)

$$(x - y)^2 = (x + y)^2 - 4xy = 25 - 6 = 19$$

 $\Rightarrow x - y = \sqrt{19}$

x + y = 5
∴ x =
$$\frac{5 + \sqrt{19}}{2}$$
, y = $\frac{5 - \sqrt{19}}{2}$

Q.20 If
$$\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{6}$$
, find $x^2 + \frac{1}{x^2}$

 $\Rightarrow n = ab$ Also, $mb = ab^2$ $\Rightarrow m = ab$

 $mn \times nm = (mn)^2 = (ab)^4$

(a) 14 (b) 12
(c)
$$2\sqrt{2}$$
 (d) None of these
Sol. (a)
 $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = (\sqrt{6})^2$
 $\Rightarrow x + \frac{1}{x} + 2 = 6$
 $\Rightarrow x + \frac{1}{x} = 4$
 $\Rightarrow x^2 + \frac{1}{x^2} + 2 = 16$
 $\therefore x^2 + \frac{1}{x^2} = 14$
Q.21 What is 'x' if $81 \times \left(\frac{16}{25}\right)^{x+2} \div \left(\frac{3}{5}\right)^{2x+4} = 144$
(a) -3 (b) 1
(c) -1 (d) 3
Sol. (c)
 $81 \times \left(\frac{4}{5}\right)^{2(x+2)} \times \left(\frac{5}{3}\right)^{2x+4}$
 $= 3^4 \times \frac{4^{2x+4}}{5^{2x+4}} \times \frac{5^{2x+4}}{3^{2x+4}} = \frac{4^{2x+4}}{3^{2x}} = \frac{2^{4x+8}}{3^{2x}} = 144$
 $\Rightarrow \frac{2^{4x+8}}{3^{2x}} = 2^4 \cdot 3^2$
 $\Rightarrow 2^{4x+8} \cdot 3^{-2x} = 2^4 \cdot 3^2$
 $\Rightarrow 4x + 8 = 4; -2x = 2$
 $\Rightarrow x = -1$
Q.22 If $\frac{a + a + a + ...}{n \text{ times}} = a^2b$ and $\frac{b + b + b ...}{m \text{ times}} = ab^2$ then
what is the value of $\left[\frac{m + m ...}{n \text{ times}}\right] \left[\frac{n + n ...}{m \text{ times}}\right]$
(a) ab (b) (ab)³
(c) (ab)² (d) (ab)⁴
Sol. (d)
 $na = a^2b$

Q.23 If
$$\log_4 x + \log_2 x = 6$$
, then $x = ?$
Sol. $\log_{2^2} x = \frac{1}{2} \log_2 x$
 $\Rightarrow \frac{3}{2} \log_2 x = 6$
 $\therefore \log_2 x = 4 \Rightarrow x = 16$
Q.24 $\frac{\log P}{y-z} = \frac{\log Q}{z-x} = \frac{\log R}{x-y} = 10$, PQR = ?
Sol. $P = 10^{10(y-z)}$
 $Q = 10^{10(z-x)}$
 $R = 10^{10(x-y)}$
PQR = $10^{10(x-y+y-z+z-x)} = 10^0 = 1$
Q.25 If $\log P = \frac{1}{2} \log Q = \frac{1}{3} \log R$ then which of the following is true ?
(a) $P^2 = Q^2 R^2$ (b) $Q^2 = PR$
(c) $Q^2 = R^3 P$ (d) $R = P^2 Q^2$
Sol. (b)
Let, $\log P = k \Rightarrow P = e^k$
then $\log Q = 2k \Rightarrow Q = e^{2k} = P^2$
and $\log R = 3k \Rightarrow R = e^3k = P^3$
 $\therefore Q^2 = P^4 = P \times P^3 = PR$

Q.1 How many numbers from 0 to 999 are not divisible by either 5 or 7?

(a) 313(b) 341(c) 686(d) 786

Sol. (c)

Numbers from (0 - 999), divisible by 7

$$=\frac{999}{7}=142\frac{5}{7}\approx 143$$

Numbers from to (0 - 999) divisible by 5

$$=\frac{999}{5}=199\frac{4}{5}\approx 200$$

There are few number which are divisible by both 5 and 7 i.e. by 35

[UPSC-2018]

Numbers from (0 - 999) divisible by 35

$$=\frac{999}{35}\approx 28\frac{19}{35}=28$$

Numbers divisible by 5 or 7 = 143 + 200 - 29 = 314Hence, total numbers between (0 - 999) not divisible 5 or 7

= 1000 - 314 = 686

Q.2 If *R* and *S* are different integers both divisible by 5, then which of the following is not necessarily true?

(a) R - S is divisible by 5

- (b) R + S is divisible by 10
- (c) $R \times S$ is divisible by 25
- (d) $R^2 + S^2$ is divisible by 5

[UPSC-2016]

Sol. (b)

If R = 25 and S = 20

then, R + S = 25 + 20 = 45

which is not divisible by 10

Hence (b) is not necessary true

Q.3 A 2-digit number is reversed. The larger of the two number is divided by the smaller one. What is the largest possible remainder?

	(b) 27	9	(a)
	(d) 45	36	(c)
[UPSC-2017]			

Sol. (d)

For the largest possible remainder the number is = 49

The new number after reversing the digits = 94

$$\begin{array}{r} 49 \overline{)94} \\
 49 \overline{)94} \\
 \overline{49} \\
 \overline{45} \\
 45
 \end{array}$$

thus the remainder = 45

Option (d) is correct

Q.4 There are certain 2-digits numbers. The difference between the number and the one obtained on reversing it is always 27. How many such maximum two digit numbers are there?

(c) 5 (d) None of the above [UPSC-2017]

There are only 4 such 2 digits numbers

14, reversed number = 41, difference 41 - 14 = 2725, reversed number = 52, difference 52 - 25 = 2736, reversed number = 63, difference 63 - 36 = 2747, reversed number = 74, difference 74 - 47 = 2758, reversed number = 85, difference 85 - 58 = 2769, reversed number = 96, difference 96 - 69 = 27Option (d) is correct

Q.5 While writing all the numbers from 700 to 1000, how many numbers occur in which the digit at hundred's place is greater than the digit at ten's place, and the digit at ten's place is greater than the digit at unit's place?

(a)	61	(b)	64
(c)	85	(d)	91

Sol. (c)

700 – 1000								
700 se	700 series							
710	720	730		760				
1	2	3		6				
800 se	ries							
810	820			870				
1	2			7				
900 se	900 series							
910	920			980				
1	2			8				
Total sum								

 $= (1 + 2 + 3 \dots 6) + (1 + 2 \dots 7) + (1 + 2 \dots 8) = 85$

Q.6 In a school every student is assigned a unique identification number. A student is a football player if and only if the identification number is divisible by 4, whereas a student is a cricketer if and only if the identification number is divisible by 6. If every number from 1 to 100 is assigned to a student, then how many of them play cricket as well as football?

[UPSC-2019]

Sol. (b)

Students playing both the sports = students with id 12(LCM of 4 and 6) Numbers which are divisible by 12 between 1 - 100 = 8 Hence (b)

ΠE	XT IRS	Quant	titative A	ptitude	45
Q.7	e	252746B leaves remainder 0 How many values of B are (b) 3 (d) 6	Q.10	-	e-digit prime numbers can be ng all the digits 1, 2, 4 3, 4 and tion of digits? (b) One (d) Ten
~ .		[UPSC-2019]		(0)	[UPSC-2020]
Sol.	(c) 4252746B is divisible 4 + 2 + 5 + 2 + 7 + 4 + 30 + B = 3n B must be a multiple B = 0, 3, 6, 9	6 + B = 3n	Sol.	(a) Sum of 1, 2, 3, 4, i.e. it will always So no such num Hence (a)	s be divisible by 3
Q.8	Hence (c) Number 136 is added to 5B7 and the sum obtained is 7A3, where A and B are integers. It is given that 7A3 is exactly divisible by 3. The only possible value of B is		Q.11	, ,	gers are there between 1 and 100 • a digit but are not divisible by 4? (b) 11 (d) 13 [UPSC-2020]
	(a) 2 (c) 7	(b) 5 (d) 8	Sol.	(c)	
Sol.	[UPSC-2019] (d) 7 + 6 = 13 That means 1 carries forward So, B + 3 + 1 = 10 + A(as again 1 carries forward)			i.e. 12 such num Hence (c)	5,46,47,49,54,74,94 bers
	possible value of A is So, $B = 8$	which is not possible so only	Q.12 Sol.	75 is divided by (a) 50 (c) 5 (a)	(b) 25 (d) 1 [UPSC-2020]
Q.9	Hence (d) Let XYZ be a three-digit number, where (X + Y + Z) is not a multiple of 3. Then (XYZ + YZX + ZXY)			The unit place of So the only poss Hence (a)	f the expression will be zero ible option is 50
	is not divisible by (a) 3 (c) 37	(b) 9 (d) (X + Y + Z) [UPSC-2020]	 Q.13 For what value of n, th (10ⁿ +1) is 2? (a) For n = 0 only (b) For any whole no 		
Sol.	(b) X + Y + Z is not equal to 3n where n is any natural number XYZ + YZX + ZXY = 100(X + Y + Z) + 10(X + Y + Z) + (X + Y + Z) = 111(X + Y + Z) This is divisible by 3, 37, X + Y + Z But not by 9 Hence (b)			• •	itive integer n only
				(b) 10 ⁿ for any whole as 1 Hence (b)	e number n will have sum of digits
				e	livisible by 3 but not divisible by the following is divisible by 4?

46

(a)
$$2n$$
 (b) $3n$
(c) $2n + 4$ (d) $3n +$

[UPSC-2020]

1

Sol. (d)

n=9 is divisible by 3 but not 6 Option (d) satisfies the condition As 3n + 1 = 28 is divisible by 4 Hence (d)

Q.15 What is the largest number among the following?

(a)	$\left(\frac{1}{2}\right)^{-6}$	(b)	$\left(\frac{1}{4}\right)^{-3}$
(c)	$\left(\frac{1}{3}\right)^{-4}$	(d)	$\left(\frac{1}{6}\right)^{-2}$

[UPSC-2020]

Sol. (c)

Option (a):
$$\left(\frac{1}{2}\right)^{-6} = 2^6 = 64$$

Option (b): $\left(\frac{1}{4}\right)^{-3} = 4^3 = 64$
Option (c): $\left(\frac{1}{3}\right)^{-4} = 3^4 = 81$
Option (d): $\left(\frac{1}{6}\right)^{-2} = 6^2 = 36$

Q.16 Consider all 3-digit numbers (without repetition of digits) obtained using three non-zero digits which are multiples of 3. Let S be their sum. Which of the following is/are correct?

1. S is always divisble by 74

2. S is always divisible by 9

Select the correct answer using code given below:

[UPSC-2021]

Sol. (c)

Three non-zero digits which are multiples of 3 are: 3, 6, and 9

Using these 3 digits, we can make 6 three-digit numbers : 396, 369, 693, 639, 936, 963

	So their sum = 369 + 396 + 639 + 693 + 936 + 963 = 3996
	It is divisible by both 74 and 9
	Hence (c)
Q.17	Integers are listed from 700 to 1000. In how many integers is the sum of the digits 10?
	(a) 6 (b) 7
	(c) 8 (d) 9 [UPSC-2021]
Sol.	(d)
	Here we have to find out all the integers between 700 to 1000, in which sum of the digits is 10,
	Between 700 – 799
	7 + a + b = 10
	a + b = 3
	possible numbers = 703, 712, 721 , 730
	Between 800 - 899
	8 + a + b = 10
	a + b = 2
	possible numbers = 802, 811, 820
	Between 900 – 999
	9 + a + b = 10
	a + b = 1
	possible numbers = 901, 910
	total numbers = 10
	Hence (d)
Q.18	If 3 ²⁰¹⁹ is divided by 10, then what is the

Q.18 If 3 is divided by 10, then what is the remainder?

> (a) 1 (b) 3 (c) 7 (d) 9

> > [UPSC-2021]

Sol. (c)

In 3^{2019} , the unit place will be 7

So remainder will be 7

Hence (c)

- Q.19 The number 3798125P369 is divisible by 7. What is the value of the digit P?
 - (a) 1 (b) 6
 - (d) 9 (c) 7

[UPSC-2021]

ΠE	XT IRS Quar	ntitative A	ptitude	47
Sol.	(d)			re multiple of $3 = 15 \times 12 \times 9 \times 6$
	Using hit and trial method,		. , .	$(3 \times 3) \times (3 \times 2) \times 3 = 3^6 \times 3^6 $
	For the number to be divisible by 7,		$(5 \times 4 \times 2)$	
	P must be 6		Therefore, the max	kimum value of m is 6
	Hence (d)		Hence, option (b) i	s the correct answer
Q.20	A biology class at high school predicted that a local population of animals will double in size every 12 years. The population at the beginning of the year	Q.23	Which number am smallest?	hongst 2^{40} , 3^{21} , 4^{18} and 8^{12} is the
	2021 was estimated to be 50 animals. If P represents		(a) 2^{40}	(b) 3^{21}
	the population after n years, then which one of the		(c) 4^{18}	(d) 8^{12}
	following equations represents the model of the			[UPSC-2022]
	class for the population?	Sol.	(b)	
	(a) $P = 12 + 50n$ (b) $P = 50 + 12n$		The given number	s are: 2^{40} , 3^{21} , 4^{18} and 8^{12}
	(c) $P = 50 (2)12n$ (d) $P = 50 (2)n/12$ [UPSC-2021]		We can also write	them as: 2^{40} , 321, 2^{36} and 2^{36}
Sol.	(d)	Q.24		nder when 91 × 92 × 93 × 94 × ×
	Population is getting doubled every 12 years, and			99 is divided by 1261?
	population in the year 2021 is 50 animals. So, after		(a) 3	(b) 2
	12 years it will get doubled to 100 animals.		(c) 1	(d) 0
	Using options for $n = 12$, in option d, $P = 100$			[UPSC-2022]
	Hence(d)	Sol.	(d)	
Q.21	When a certain number is multiplied by 7, the product entirely comprises ones only (1111).		Given expression = × 98 × 99	= 91 × 92 × 93 × 94 × 95 × 96 × 97
	What is the smallest such number?		1261 = 1 × 13 × 97	
	(a) 15713 (b) 15723		So, its factors are 1	3 and 97
	(c) 15783 (d) 5873			
Cal	[UPSC-2021]		-	n X, multiples of 13 and 97 are
Sol.	(d)		X. Hence, the rema	mpletely divide the expression
	1 is not divisible by 7		A. Hence, the fend	
	11 is not divisible by 7	•.6		
	1111 is not divisible by 7		PRACTICE S	SET : BASIC QUESTIONS
	1111 is not divisible by 7			
	11111 is not divisible by 7	Q.1	What digit should	be put in place of <i>x</i> in five-digit
	111111 is divisible by 7 = 111111/7 = 15873		Ũ	nake it divisible by 3?
	Hence (d)		(a) 0	(b) 3
Q.22	$15 \times 14 \times 13 \times \dots \times 3 \times 2 \times 1 = 3^m \times n$		(c) 2	(d) Both (a) & (b)
	Where m and n are positive integers, then what is			
	the maximum value of <i>m</i> ?	Q.2	Find the unit digit	-
	(a) 7 (b) 6		$1^2 + 2^2 + 3^2 + \dots 50^2$	2
	(c) 5 (d) 4		(a) 0	(b) 3
C_1	[UPSC-2022]		(c) 5	(d) 9
Sol.	(b) 15 × 14 × 13 × 12 × 11 × 10 × 0 × 8 × 7 × 6 × 5 × 4 ×	Q.3	Find the unit digit	of the expression

 $15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times$ $3 \times 2 \times 1 = 3^m \times n$

Q.3 Find the unit digit of the expression $1^1 + 2^2 + 3^3 + 4^4 + 5^5 + \dots + 10^{10}$

40		lest of Divi
	(a) 7	(b) 3
	(c) 0	(d) None of these
Q.4	What is the remainder w divided by 7?	when $10 + 10^2 + 10^3 + 10^4$ is
	(a) 1	(b) 3
	(c) 5	(d) 2
Q.5	The remainder when 69	$9^{69^{69^{\cdots}}}$ is divided by 34 is :
	(a) 0	(b) 1
	(c) 31	(d) Data Inadequate
Q.6	integers in the form of 12 number is divisible by ? (a) 0	(b) 5
	(c) 2	(d) 4
Q.7	by 3 for which value of <i>b</i>	
	(a) 0 (c) 2	(b) 1 (d) 3
Q.8	If the unit digit in the p 574) is 4 the value of <i>A</i> i	roduct (39 × 136 × 48 <i>A</i> × s:
	(a) 3	(b) 4
	(c) 5	(d) 2
Q.9	9. The minimum value of	
	(a) 16	(b) 9
	(c) 8	(d) None of these
Q.10	Which of these is greate	
	(a) 2^{300} (c) 5^{150}	 (b) 3²⁰⁰ (d) Either (a) or (b)
- · · ·		
Q.11	Which of these is greate (a) 5 ¹⁰⁰	er: 5^{100} or 2^{300} (b) 2^{300}
	(c) Both are equal	(d) Can't be determined.
Q.12	The value of $\left(\sqrt{8}\right)^{\frac{1}{3}}$ is:	
	(a) 2	(b) $\sqrt{4}$
		(1) 0

(c) $\sqrt{2}$ (d) 8

Q.13 If $\sqrt{2^n} = 64$, then the value of *n* is:

(a)	5	(b)	3
(c)	6	(d)	12

Q.14	If $x = -0.5$, then which of the following has the
	smallest value?

(a)
$$2\sqrt{-x}$$
 (b) $\frac{1}{x}$
(c) 2^{-x} (d) $\frac{1}{\sqrt{-x}}$

Q.15 If
$$(1.001)^{259} = 1.29$$
, $(1.001)^{62} = 1.06$, then $(1.001)^{321}$

1.14	(b)	1.8
2.23	(d)	1.37

Answerkey								
1.	(d)	2.	(c)	3.	(a)	4.	(a)	
5.	(b)	6.	(b)	7.	(a)	8.	(b)	
9.	(c)	10.	(c)	11.	(b)	12.	(c)	
13.	(d)	14.	(b)	15.	(d)			

(a) (c)

PRACTICE SET : ADVANCE QUESTIONS

- **Q.1** The single digit number that must be added to 108312 in order to obtain a multiple of 11 is:
 - (a) 2 (b) 8 (c) 6 (d) 5
- Q.2 Find the two-digit number that meets the following criteria :

The digit in the unit's place exceeds the digit in its ten's by 2 and the product of the required number with the sum of its digits is equal to 144.

- (a) 13 (b) 46
- (c) 24 (d) 35
- **Q.3** A number when divided by 76 gives 53 as a remainder, find the remainder when this number is divided by 19.
 - (a) 9 (b) 14 (c) 16 (d) 15
- Q.4 Which of the following can be a number divisible by 48 ?

(a) 513704	(b) 1387654
(c) 222144	(d) None of these

NE	XT IRS	Quant	titative Ap	ptitude	49
Q.5	If <i>x</i> 2387 is divisible	by 11, find the value of <i>x</i> ?	0.45	$\sqrt{720}$ · $\sqrt{-4}$ · · · ·	hen the value of <i>a</i> is:
	(a) 5	(b) 1	Q.15		
	(c) 7	(d) 0		(a) 27	(b) 18
Q.6	What is the largest p	oossible two digit number by		(c) 81	(d) 3
	which 327635 can b	e divided?	Q.16	Which one of the	se is smallest ?
	(a) 55	(b) 65		∛5 or ∜3 or ∜4	
	(c) 85	(d) 95			
Q.7	If 1872 <i>ab</i> is divisible	by 80. Then find the smallest		(a) ∛5	
	value of (a + b):			(b) <u>4√3</u>	
	(a) 4	(b) 0		(c) <u></u> 5√4	
	(c) 8	(d) 6			tarminad
Q.8	If $24753x$ is divisibl	e by 36, then find the value		(d) Cannot be de	termined
	of <i>x</i> :	2	o	$-\frac{3}{2}$	= 5p + 3, then the value of $p + 6$ is:
	(a) 0	(b) 4	Q.17		
	(c) 6	(d) 8		(a) 9	(b) 12
Q.9	A number of the form	n 4 <i>x</i> + 2 is always divisible by		(c) 3	(d) 4
2	6, where <i>x</i> is a natur			2-2	$\sqrt{3}$
	(a) <i>x</i> is prime	(b) <i>x</i> is even	Q.18	The value of $2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+$	$\frac{1}{\sqrt{3}}$ is:
	(c) x is odd	(d) None of these		(a) $9.4.5$	(b) $0 + 4\sqrt{5}$
O 10	The smallest possi	ble number which must be		(a) $9 - 4\sqrt{5}$	(b) $9 + 4\sqrt{5}$ (d) $7 + 4\sqrt{3}$
Q.10	-	d to 10,000 to make it a perfect		(c) $7 - 4\sqrt{3}$	(d) $7 + 4\sqrt{3}$
	square is:			1	1 1
	(a) 10	(b) 25	Q.19	The value of $\frac{1}{\sqrt{5}}$	$\frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{7}+\sqrt{5}}$ is:
	(c) 5	(d) 40		r 0,0	
0.11	The greatest divisor	of		(a) 1	(b) $\frac{\sqrt{7}-\sqrt{3}}{2}$
X	-	$b^{8}(a^{16} + b^{16}) (a^{32} + b^{32})$ is:			2
	(a) $a^{16} - b^{16}$			(c) $\sqrt{5}$	(d) $\frac{\sqrt{7}+\sqrt{3}}{2}$
	(a) $u^{-} = b^{-}$ (c) $a^{64} - b^{64}$	(b) $a^{64} + b^{64}$			2
	()	(u) <i>u</i> · <i>U</i>	Q.20	If $(\sqrt{a} + \sqrt{b}) = 13$	and $(\sqrt{a} - \sqrt{b}) = \sqrt{29}$, then the
Q.12	$25^n - 1$ is:			value of \sqrt{ab} is :	
	(a) always divisible			(a) 50	(b) 40
	(b) always divisible	•		(c) 160	(d) 35
	(c) always divisible	e by 6		(c) 100	(4) 00
	(d) All of these			(a^n)	$(a^{n} - a^{-n})^{2}$
Q.13		ng can never be in the ending	Q.21	The value of $\left(\frac{u}{1}\right)$	$\left(\frac{a^{n-n}}{2}\right)^2 - \left(\frac{a^n - a^{-n}}{2}\right)^2$ is:
	of a perfect cube?			<pre>``</pre>	
	(a) 6	(b) Only one '0'		(a) 0	(b) 1
	(c) 4	(d) 5		(c) 4	(d) None of these
Q.14	The square root of 5	28529 is:	Q.22	$(2^{13} + 1)$ is divisib	le by:
	(a) 413	(b) 727		(a) 2	(b) 3
	(c) 517	(d) 567		(c) 5	(d) None of these

Q.23 $2^{41} - 2^{39} - 2^{40}$ is same as:			5 Whi	ich one o	of the fo	ollowing	; is corre	ect?	
(a) 2 ⁴¹	(b) 2^{39}		(a)	$\sqrt{2} < \sqrt[4]{2}$	$\overline{6} < \sqrt[3]{4}$	(b)	$\sqrt{2} <$	$\sqrt[4]{6} > \sqrt[3]{4}$	$\overline{4}$
(c) 2^{37}	(d) 2^{40}		(c)	$\frac{4}{6} < 1$	$\frac{1}{2} > \frac{3}{4}$	(đ)	4/6 >	$\sqrt{2} < \sqrt[3]{4}$	<u>_</u>
Q.24 If $3^{a-1} + 3^a + 3^{a-1}$	$3^{a+1} = 1053$, then the value of a is:		(0)	$\sqrt{0}$	2 < VI	(4)	¥0 >	$\sqrt{2}$	I
(a) 1	(b) 2				Ang	swer ke	v		
(c) 5	(d) 4								
~ /		1.	(c)	2.	(c)	3.	(d)	4.	(c)
Q.25 If $x = \sqrt{3} + 1$	$\sqrt{2}$, then the value of $x^3 + x + \frac{1}{x} + \frac{1}{x^3}$	5.	(d)	6.	(a)	7.	(b)	8.	(c)
is	XX	9.	(d)	10.	(b)	11.	(c)	12.	(d)
	(b) $20\sqrt{3}$	13.	(b)	14.	(b)	15.	(d)	16.	(b)
(a) $15\sqrt{3}$		17.	(a)	18.	(c)	19.	(b)	20.	(d)
(c) $10\sqrt{2}$	(d) $15\sqrt{2}$	21.	(b)	22.	(b)	23.	(b)	24.	(c)
		25.	(b)	26.	(a)				