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CHAPTER

Introduction of Electromagnetic Theory

1.1 Introduction

Electromagnetics is the study of the effects of electric charge at rest and in motion. There are two kind of
charges: positive and negative. Both charges produce a current, which gives rise to a magnetic field. A field is
spatial distribution of a quantity which may or may not be a function of time. A time varying electric field is
accompanied by a magnetic field, and vice versa. Time varying electric and magnetic fields are coupled, producing
electromagnetic field. Under certain conditions, time varying electromagnetic fields produce waves that radiates
from the source.

Electromagnetic deals with space concepts and required thinking in three dimensions of real world;
hence we must understand the three dimensional coordinate systems.

1.2 Coordinate Systems

In general, the physical qualities we shall be dealing with in electromagnetics are functions of space and
time. In order to describe the spatial variations of the quantities, we must be able to define all points uniquely in
space in a suitable manner. This requires using an appropriate coordinate system.

A coordinate system defines points of reference from which specific vector directions may be defined.

Depending on the geometry of the application, one coordinate system may lead to more efficient vector
definitions than others. The three most commonly used co-ordinate systems used in the study of electromagnetics
are rectangular coordinates (or cartesian coordinates), cylindrical coordinates and spherical coordinates.

1.2.1 Cartesian Coordinates

Avector A in Cartesian (other wise known as rectangular) «— ¥ = constant

coordinates can be written as 7 1 z=constant

(A, A, A)or Aa +Aa, +Aa, L(1.1)

1
1
| -~ Xx =constant
1
1
1

Where a,, a, a,are unit vectors along
the x, y and z directions
The ranges of the variables are:

—0 < x < + o0 Figure 1.1 : A point in Cartesian coordinates is defined by the intersection
oo <Y< + oo of the three planes: x = constant, y = constant, z = constant.

The three unit vectors are normal to each of the three surfaces.
—0 <7< + o0 ..(1.2)
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1.2.2 Cylindrical Coordinates

The cylindrical coordinate system is very convenient whenever we are dealing with problems having
cylindrical symmetry.

A point Pin cylindrical coordinates is represented as (p, ¢, z) and is as shown in Fig 1.2. Observe Fig. 1.2
closely and note how we define each space variable; p is the radius of the cylinder passing through Por the radial
distance from the z-axis; ¢, called the azimuthal angle, is measured from the x-axis in the xy-plane; and zis the

same as in the Cartesian system. The ranges of the variables are:
0<p<o -..(1.3)

O0<o<2rm
—00 < Z< oo

A vector A in cylindrical coordinates can be written as

(A Ay A or A, + Ay + AR, (1.4)

z = a constant

¢ = a constant

x o p = a constant X
(a) (b)

Figure 1.2: (a) The pointis defined by the intersection of the cylinder and the two planes.
(b) Point P and unit vectors in the cylindrical coordinate system.

Notice that the unit vectors épéq, and &, are mutually perpendicular because our coordinate system is

orthogonal.
)8, - 8 8 =8,5, =0
8,8, = 8,°8,=8,"8,=1 .(1.5)
&x4 = 4,
8% - §
a,x38, = (16)

Note: An orthogonal system is one in which the coordinates are mutually perpendicular.

The relationships between the variables (x, y, 2) of the Cartesian coordinate system and those of the
cylindrical system (p, ¢, z) are easily obtained from figure 1.3.

i ' -2 02 o=ty 2= (1.
Point transformation, p x“+ye, 0 =72 (1.7)
or,

X=pCoSoO, y=psing, z=2z ..(1.8)

Whereas equation (1.7) is for transforming a point from Cartesian (x, y, z) to cylindrical (p, ¢, z) coordinates,
equation (1.8) is for (p, ¢, 2) = (x, y, 2) transformation.
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The relationships between &,.,4,,a, and ép,é¢,éz are

Vector transformation, &, = Cosq>ép - sinq)éq,

>

Y

Q>
N

or,

NQ)> ép _dQ)>

sin¢a, +cos ¢4,
a (1.9)

z

cos04, +singa,

—-sinoa, +cosoa,

X

Figure 1.3: Relationship between (x, y, z) and (p, ¢, z)

Finally, the relationship between (A, Ay, A)) and (Ap, A¢, A, are

a, ..(1.10)
A cosd  sing
Ay| = |-sind coso
A, 0 0
A, cos¢ —sind
Al = sing coséd
A, 0 0

1.2.3 Spherical Coordinates

0
0
1

- O O

A,

Ay

A,

L(1.171)

AP
Ay .(1.12)
A

4

The spherical coordinate system is most appropriate when dealing with problems having a degree of
spherical symmetry. A point P can be represented as (r, 6, ¢) and is illustrated in figure. 1.4.

r=a constant
(sphere)
(b)

¢ = a constant
(plane)

Figure 1.4:(a) Point P and unit vectors in the cylindrical coordinate system (b) The three mutually perpendicular
surfaces of the spherical coordinate system (c) The three unit vectors of spherical coordinates

(d) The differential volume element in the spherical coordinate system.
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From figure. 1.4, we notice that ris defined as the distance from the origin to point P or the radius of a
sphere centered at the origin and passing through P; 0 (called the colatitudes) is the angle between the z-axis
and the position vector of P; and ¢ is measured from the x-axis (the same azimuthal angle in cylindrical coordinates).

According to these definitions, the ranges of the
0<r<eo
0<6<m
0<¢o<2rn

variables are

Avector 4 in spherical coordinates can be written as

(A, Ag A) OF A, + Ay + A,

.(1.13)

(1.14)

The unit vectors é,, ée and é¢ are mutually perpendicular because our coordinate system is orthogonal.

£

Q>
=

Q>
2

4 -

Q>
<
Q>

X g

4x4,
8, % &

- 8-8,=58,8=0
= 8 8 =8, 5 =1
= §,

= &,

..(1.15)

..(1.16)

The relationship between the variables (x, y, z) of the Cartesian coordinate system and those of the
spherical coordinate system (p, 6, ¢) are easily obtained from figure 1.4.

[2 2
Point transformation, r=x2 +y2 +72,0= tan,1x—+y‘ o= tan™"
z

or x=rsin®cosd, y=rsinBsing, z=rcoso

The relationship between &,,a,,a, and

Q>

X

>

Y

Q>

or,

> L o o

Finally, the relationship between (A

' ’

Vector transformation, A

or, A

8.20.8, are
= SiNBCOS0&, +COSHCOSHG, — SNG4,
= sinOsiNga, +cosesiNo&, +Cosoa,
= C0S0&, —Sinog,

= sinBcos6a, +sinBsinoa, +cosoa,
= cos@coso0a, +cosOsinga, —sinba,
= —sinea, +cosoa,

A)and (A, A, A¢) are

sinBcos¢  sinBsing  cos8||A,
= |cOosOcosp cosOsing —sind
-Sino COSd 0

sinfcosd cosBcosod —sindl|A,
= |sin@cosd cosOsing cosd||A,
cos6 —-sin® 0 Ay

.(1.17)

..(1.18)

..(1.19)

..(1.20)

.(1.21)
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p=rsin®

Y P(x, v, 2) = P(r, 8, 9) = P(p, ¢, 2)

Z=rcos0

X=pcosod

x/ y=psind

Figure 1.5: Relationships between space variables (x, y, z), (r, 6, d) and (p, ¢, z)

Find the component of a vector A= —Zéy +ya, at the point P(0, -2, 3)

which si directed towards the point Q(v/3,-60°,1).
Solution:
P(0, -2, 3) is in Cartesian coordinates

Q(+/3,-60°,1) is in cylindrical coordinates

x = rcos® = +/3cos(-60°) = 0.866
y = rsin®=+/3sin(-60°)=-1.5
Q=(0.866,-1.5,1)
Vector o = (0.866-0)4, +(-1.5+2)8, + (1-3)4,
0.8664, +0.54, -24,

, X 0.8664, +0.53, - 24,
Unit vector apg =
J0.8662 +0.52 + 22

Component of vector 4 at point P(0, -2, 3) towards point Q

(0.8664, +0.54, - 24,)
2.236

A- éPQ (_Béy - 2éz) :

(-3x0.5)+4
2.236

Determine the curl of the following vector fields:

-

(i) A=pz°4, +psin® 04, +2pzsin®04,, in circular cylindrical coordinate system.

=1.118

(ii) B= ra, +rcos? eé¢ ,in spherical coordinate system.
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Solution:
(i) For circular cylindrical coordinate system,

a pa & g pa &,

vxi= 2o 9o o) 119 o 9

ATl 0 9z plop a0 9z
A PA A pz2 p?sifo 2pzsin®¢

= g [(2pzsin2¢) a, - p(2zsin’ ¢ — 2p2)3, + (2psir? ¢)éz]

= 2zsin204, +22(p - sin? 0)a, + 2sin® ¢a,

(ii) For spherical coordinate system,

a ragy rsinea, a rg  rsinea,
- 1 0 d d 1 Jd 0 0
VxB = - — — = - — —
rPsinglor 96 90 r2sing|or 96 o
A Ay TSinBA, r 0 rsinecos®

= ;ine[%( 2sinBcos®0)a, — 2r sinecoszeée}

30 2
=Cos 0 200363|n eé,—ZCOSZGée
sSin®

1.3 Vector Calculus

In electromagnetics, we frequently use the concept of a field. A field is a function that assigns a particular
physical quantity to every point in a region. In general, a field varies with both position and time. There are scalar
fields and vector fields.

Quantities that can be described by a magnitude alone are called scalars. Distance, temperature, mass
etc. are examples of scalar quantities. Other quantities, called vectors, require both a magnitude and a direction
to fully characterize them. Examples of vector quantities include velocity, force, acceleration etc.

The concepts introduced in this section provide a convenient language for expressing certain fundamental
ideas in electromagnetics in general.

1.3.1 Line, Surface, and Volume Integrals

Line Integral

The familiar concept of integration will now be extended to cases when the integrand involves a vector.
By a line we mean the path along a curve in space. We shall use terms such as line, curve, and contour
interchangeably.

The line integral J‘Lﬂﬁ is the integral of the tangential component of A along curve L.
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>

path L
Figure 1.10: Path of integration of vector field A.
Given avector field 4 and acurve L, we define the integral as the line integral of 4 around L (see figure 1.10):

F\"Eﬁ = f:lﬂlcosedl (1.22)
L

If the path of integration is a closed curve such as abca in figure 1.11, precedent equation becomes a
closed contour integral.

Which is called the circulation of 4 around L.

Surface Integral
Another integral that will be encountered in the study of electromagnetic fields is the surface integral.

Given a vector field A, continuous in a region containing the smooth surface S, we define the surface integral or

the flux of A through S (see figure 1.11)

surface S

Figure 1.11: The flux of a vector field A through surface S.

y = [ JAcose aS=[ A-4,ds .(1.24)

Or simply v = jSZ\-dS ..(1.25)

Where, at any pointon S, &, is the unit normal to S. For a closed surface (defining a volume), precedent
equation becomes:

y= §A ds -(1.26)
S

Which is referred to as the net outward flux of A from S.
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Volume Integral

Finally, we will encounter various volume integrals of scalar quantities, such as a volume charge density
p, A typical integration would involve the computation of the total charge if the volume charge density was
known. It is written as:

Q-= jpv av .(1.27)

1.3.2 Differential Length, Area and Volume

In our study of electromagnetism we will often be required to perform line, surface, and volume integrations.
The evaluation of these integrals in a particular coordinate system requires the knowledge of differential elements
of length, surface, and volume. In the following subsections we describe how these differential elements are
constructed in each coordinate system.

Cartesian Coordinates
From figure 1.6, we notice that:

1. Differential displacement is given by:
di = dxa, +dya, +dza, ..(1.28)
2. Differential normal area is given by:
dydza,
ds = {dxdza, ..(1.29)
dxdya,
3. Differential volume is given by:
dv = dxdydz ...(1.30)

Volume = dx dy dz

dx dy dz

P
dy dz A dx dz
dy

(a) X (b)

Figure 1.6: Differential elements in the right-handed Cartesian coordinate system

dy dx
% e Q' ” &
4 lo)

z

Figure 1.7 : Differential normal areas in Cartesian coordinates.
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The way ¢S is defined is important. The differential surface (or area) element g§ may generally be

defined as:

Js = dsa, (1.31)

where dSis the area of the surface elementand &, is a unit vector normal to the surface dS (and directed

away) from the volume if dS'is part of the surface describing a volume). If we consider surface ABCD in figure 1.6,

for example, gs = dydza, whereas for surface PQRS, g5 = —dydza, because &, = -a, is normal to PQRS.

Remember: What we have to remember at all times about differential elements is di and how to get gg and

dvfrom it. Once dlis remembered, dS and dv can easily be found.

Cylindrical Coordinates:
From figure 1.8, we notice that:

1.

Differential displacement is given by:

dl = dpa, +pdog, +dza, ..(1.32)
Differential normal area is given by:
pdpdza,
ds = (dpdza, ..(1.33)
padapa,
Differential volume is given by:
dv = pdpddpdz ..(1.34)
z
/ dp z
p ) T
/ ‘; P 5 ~dz |
O z ™ e dp
P z jdz f “‘1::\::\:\ /
A
l : . y
y fon
az : [ pd¢
o G AN DL
/ o+ do !
x & ; p+dp
(a) (b)
' pdo &y
dz
dz pd¢
a, dp dp

Figure 1.8:(a) & (b) Differential elements in cylindrical coordinates
(c) Differential normal areas in cylindrical coordinates
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Spherical Coordinates:
From figure 1.9, we notice that:

1. Differential displacement is given by:
di = dra, +rabg, +rsinedoa, ...(1.35)
2. Differential normal area is given by:
r? sineae doa,
gs = 1rsinedrdoa, ..(1.36)
rardea,
3. Differential volume is given by:
dv = r?sin @ drde do ..(1.37)
z rsin 6d rsin 0d a,

pdo = rsin 6 do rde dr
rdo dr

rde Qg

(a) (b) (c)

rsin 0do

(a) (b) (c)
Figure. 1.9:(a) & (b) Differential elements in spherical coordinates.
(c) Differential normal areas in spherical coordinates
For easy reference, the differential length, surface, and volume elements for the three coordinate systems
are summarized in Table 1.1.

Coordinate system

Differential | Rectangular
elements (Cartesian) Cylindrical Spherical
Length d/ dv @, do a drz;l
+dx i, +pd¢ &, +rd ag
+dz @, +dz a, +r sin 0 do @,
Surface ds dydz @, pdo dz 5; r’sin 6 b a,
+dv dz @, +dp dza, | +rdrsin®doa,
+dx dy @, pdp do @, +rdr do a;
Volume dv | dx dydz pdp do dz r2drsin @ do do

Table 1.1 : Differential elements of length, surface, and volume in the rectangular, cylindrical, and spherical coordinate systems

Example-1.3 Consider the object shown in figure below. Calculate:
The distance BC.

The distance CD.

The surface area ABCD.
The surface area ABO.
The surface area AOFD.
The volume ABDCFO.

C (0, 5, 10)

D (5,0, 10)

LR O
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Solution:

Although points A, B, C and D are given in Cartesian coordinates, it is obvious that the object has
cylindrical symmetry. Hence, we solve the problem in cylindrical coordinates. The points are transformed
from Cartesian to cylindrical coordinates as follows:

A(5,0,0)—>A(5,0°0)

B(0,5,0) A(S,g,o)

C(0,5,10)— 0(5%,10)
D

D(5,0,10)—
Along BC, dl = dz; hence,

(5,0° 10)

10
BC= [ di=[ az=10
Along CD, dl = pdp and p =5, so

Y2 _ o 51

CD = jo pdo = 50
For ABCD, dS = pdddz, p = 5. Hence
n/2 10 10

area ABCD = [ dS= j pdodz = 5j d(])J.ZzOdz = 25n

For ABO, dS = pdddp and z = 0, so
/2 ¢5 /2 5
area ABO = -[¢:0 J-p:OkaI)dp = J-¢:o d¢fo pdp=6.25n

For AOFD, dS = dpdzand ¢ = 0°, so

area AOFD = LS:OESO dpdz = 50
For volume ABDCFO, dv = pdd dz dp

veJav= i) pdedzap - [z

d¢jo5 pap = 6251

1.3.3 Del Operator and Directional Derivative
The del operator, written V, is the vector differential operator. In Cartesian coordinates,

0~ 0.~ 0
V=— (1
axa +ayay+a (1.38)

This vector differential operator, otherwise known as the gradient operator, is not a vector in itself, but
when it operates on a scalar function, a vector is obtained as result. The operator is useful in defining

1.

2
3.
4

The gradient of a scalar V, written, as V V.
The divergence of a vector A, writtenas V. A.

The curl of a vector A, written as V xA.
The Laplacian of a scalar V, written as V2 V.
Vector identities: ¢ V- (VxA)=0 e Vx(VF)=0 e Vx(VxA) =V (V-A-V2A

Each of these will be defined in detail in the following sections. The expressions for the del operator Vin
a cylindrical and spherical coordinates are:

. . - .~ 0
Cartesian coordinates, V=—a-+—a,+—a,
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p8¢a¢ az % ~(1:39)

Spherical coordinates, V=_—-4 +1iée +;ié¢
or r oo rsin® do

0
Cylindrical dinates, = —
ylindrical coordinates % a,+
J .

..(1.40)

1.3.4 Gradientof a Scalar

The gradient of a scalar field Vis a vector that represents both the magnitude and the direction of the
maximum space rate of change of V.

It depends upon the position where the gradient is to be evaluated and it may have different magnitudes
and directions locations in space.

The gradient of Vcan be expressed in Cartesian, cylindrical, and spherical coordinates.

. . oV. oV. aV.
Cartesian coordinates, VV = gax +Way +Eaz ..(1.41)

avV,. 19V, V.,

Cylindrical coordinates, VV = a_pap +Ba_¢a¢+EaZ ..(1.42)
. . yé+1a\/ﬂ+ 1 V.
Spherical coordinates, VV = ar e rsing 0o NG ...(1.43)
NOTE

- " VU+VW=VU+VV
‘ VUV =VVU+UVV
{ ) (] If A =VV, Vis said to be the scalar potential of A.

1.3.5 Divergence of aVector and Divergence Theorem

The divergence of A ata given point Pis the outward flux per unit volume as the volume shrinks about P.
JAdS
Hence, div A=V. A= lim 3
Av—=0 AV
Where Av is the volume enclosed by the closed surface S in which Pis located. Physically, we may
regard the divergence of the vector field A at a given point as a measure of how much the field diverges or
emanates from that point. Figure 1.12 (a) shows that the divergence of a vector field at point P is positive
because the vector diverges (or spreads out) at P. In figure 1.12 (b) a vector field has negative divergence
(or convergence) at P, and in figure 1.12 (c) a vector field has zero divergence at P.

..(1.45)

\ / \ /
(a) (b)
Figure 1.12: lllustration of the divergence of a vector field at P;

(a) positive divergence, (b) negative divergence,
(c) zero divergence.

(c)
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The divergence of A at point P is given by:

— 0A, OA A
Cartesian coordinates V- A= —"+—y+a—Z ...(1.46)
ox dy 0z
_ 0A
Cylindrical coordinates V- A= li(pA )+1—¢+ai ..(1.47)
pop " payp oz
, , - 10,5 1 9 . 1 0A,

h | V-A=—5—(rA)+ —(Aysind) + - ..(1.4
Spherical coordinates A p ar( » oo ae(Ae ) rsin® 30 (1.48)
From the definition of the divergence of A, we can write that

§ A-dS = [vAav .(1.49)
v

This is called the divergence theorem.

Remember: The divergence theorem states the total outward flux of a vector field A through the closed
surface Sis the same as the volume integral of the divergence of A.

Volume v Closed Surface S

Figure 1.13:Volumev enclosed by surface S.

Example-1.4 For a vector field A=xyz®a, = xy®za, + x°yza,. Evaluate the surface

integral for a surface of unit cube defined by 0<x<1,0<y<1,0<z<1. ,

Solution:
Given unit cube, therefore, the limits of integration are 0 to 1 for dx, dy and dz. I
1 1 1
SN 1 1 1
$A-dS = jo [ xyZ2dydz + .[o [ xy? zaxdiz + jo_[xz yzaxdy 5
0 0 0 I, .y
=L+ 1+ 1
N 11 o _111
I = —_[Ojoo.dydz+jo_[oyz dydz = So=¢ )
101 11 1 101 5 111
L= Jpzdvaz = 55=7 and L= [[Pyaraz = 2.o=¢
dgg o 117
Cﬁ ’ 6 4 6 12

Verify the above example result by using the divergence theorem.

Solution:
According to the divergence theorem.

gSZ\-d§ = jv(div R)dv

A dA dA 1 ,
div A = a+d_y+E =y + 2yzx + X2y = j”o(y22+2y2x+x y)dxdy dz
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Hence, 9S/Z\~O’§ = J'V(div,z\)=%

1.3.6 Curl of a Vector and Stokes’s Theorem
The curlis a vector operation that can be used to state whether there is a rotation associated with a vector field.

The curl of A is an axial (or rotational) vector whose magnitude is the maximum circulation of A per unit
area as the area tends to zero and whose direction is the normal direction of the area when the area is oriented so
as to make the circulation maximum.

| (o gAa)
That is, cul A = VxA=| lim 4t a, ..(1.50)
AS—»0  AS
max

Where the area ASis bounded by the curve L and 4, is the unit vector normal to the surface ASand is

determined using the right-hand rule.
The culr of A at point Pis given by:

a a &
Cartesian coordinates Vx A = i i i (1.51)
" lox 9y 9z B
A A A
a pa &
Cylindrical coordinates Vx A = 1 9 9 9 ..(1.52)
plop do 09z
A PA A
a rg rsineg,
Spherical coordinates Vx A = ! J 9 o ..(1.53)

r2singlor 090 99
A, Ay rSineA,

The physical significance of the curl of a vector field is evident; the curl provides the maximum value of
the circulation of the field per unit area (or circulation density) and indicates the direction along which this

maximum value occurs. The curl of a vector field A ata point Pmay be regarded as a measure of the circulation
or how much the field curls around P. For example, figure 1.14 (a) shows that the curl of a vector field around Pis
directed out of the page. Figure 1.14 (b) shows a vector field with zero curl.
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Figure 1.14:lllustration of a curl: (a) curl at P points out of the page; (b) curl at P is zero.

From the definition of the curl of a vector we can obtain Stokes’ theorem that relates a closed line integral
to a surface integral. We can write

$A-dl = [(VxA)dS ..(1.54)
L S

R

dsS

Closed Path L

Surface S

Figure 1.15: Determining the sense of di and d? involved in Stokes’s theorem.

Remember: Stokes's theorem states that the circulation of a vector field A around a (closed) path L is equal
to the surface integral of the curl of A over the open surface S enclosed by loop L provided that A and

V x Z are continuous on S.

Given vector A = x?ya, +2xy?4, , find circulation of A along a closed path
OABC as shown in figure below.
y
B(1, 1)
(o, 1)

0(0, 0) A(1,0) <
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